scholarly journals Influence of the Heat Dissipation Mode of Long-Flute Cutting Tools on Temperature Distribution during HFCVD Diamond Films

Crystals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 394
Author(s):  
Zhang ◽  
Qian ◽  
wang ◽  
Huang ◽  
Zhang ◽  
...  

The distribution of substrate temperature plays a decisive role on the uniformity of polycrystalline diamond films on cemented carbide tools with a long flute, prepared by a hot filament chemical vapor deposition (HFCVD). In this work, the heat dissipation mode at the bottom of tools is a focal point, and the finite volume method (FVM) is conducted to simulate and predict the temperature field of tools, with the various materials of the holder placed under the tools. The simulation results show that the thermal conductivity of the holder affects the temperature difference of the individual tools greatly, but only affects the temperature of different tools at the same XY plane slightly. Moreover, the ceramic holder can reduce the difference in temperature of an individual tool by 54%, compared to a copper one. Afterwards, the experiments of the deposition of diamond films is performed using the preferred ceramic holder. The diamond coatings on the different positions present a highly uniform distribution on their grain size, thickness, and quality.

1992 ◽  
Vol 242 ◽  
Author(s):  
R. W. Pryor ◽  
M. W. Geis ◽  
H. R. Clark

ABSTRACTA new technique has been developed to grow semiconductor grade diamond substrates with dimensions comparable to those of currently available Si wafers. Previously, the synthetic single crystal diamond that could be grown measured only a few millimeters across, compared with single crystal Si substrates which typically are 10 to 15 cm in diameter. In the technique described, an array of features is first etched in a Si substrate. The shape of the features matches that of inexpensive, synthetic faceted diamond seeds. A diamond mosaic is then formed by allowing the diamond seeds to settle out of a slurry onto the substrate, where they become fixed and oriented in the etched features. For the experiments reported, the mosaic consists of seeds ∼ 100 μm across on 100 μm centers. A mosaic film is obtained by chemical vapor deposition of homoepitaxial diamond until the individual seeds grow together. Although these films contain low angle (<1°) grain boundaries, smooth, continuous diamond films have been obtained with electronic properties substantially better than those of polycrystalline diamond films and equivalent to those of homoepitaxial single crystal diamond films. The influence of growth conditions and seeding procedures on the crystallographic and electronic properties of these mosaic diamond films is discussed.


Author(s):  
D.P. Malta ◽  
S.A. Willard ◽  
R.A. Rudder ◽  
G.C. Hudson ◽  
J.B. Posthill ◽  
...  

Semiconducting diamond films have the potential for use as a material in which to build active electronic devices capable of operating at high temperatures or in high radiation environments. A major goal of current device-related diamond research is to achieve a high quality epitaxial film on an inexpensive, readily available, non-native substrate. One step in the process of achieving this goal is understanding the nucleation and growth processes of diamond films on diamond substrates. Electron microscopy has already proven invaluable for assessing polycrystalline diamond films grown on nonnative surfaces.The quality of the grown diamond film depends on several factors, one of which is the quality of the diamond substrate. Substrates commercially available today have often been found to have scratched surfaces resulting from the polishing process (Fig. 1a). Electron beam-induced current (EBIC) imaging shows that electrically active sub-surface defects can be present to a large degree (Fig. 1c). Growth of homoepitaxial diamond films by rf plasma-enhanced chemical vapor deposition (PECVD) has been found to planarize the scratched substrate surface (Fig. 1b).


Author(s):  
Irina Mordous

The development of modern civilization attests to its decisive role in the progressive development of institutions. They identified the difference between Western civilization and the rest of the world. Confirmation of the institutional advantages of the West was its early industrialization. The genesis and formation of institutionalism in its ideological and conceptualmethodological orientation occurs as a process alternative to neoclassic in the context of world heterodoxia, which quickly spread in social science. Highlighting institutional education as a separate area of sociocultural activity is determined by the factor of differentiation of institutional theory as a whole. A feature of institutional education is its orientation toward the individual and his/her transformation into a personality. The content of institutional education is revealed through the analysis of the institution, which includes a set of established customs, traditions, ways of thinking, behavioral stereotypes of individuals and social groups. The dynamics of socio-political, economic transformations in Ukraine requires a review of the foundations of national education and determination of the prospects for its development in the 21st century in the context of institutionalism.


1996 ◽  
Vol 11 (7) ◽  
pp. 1765-1775 ◽  
Author(s):  
James M. Olson ◽  
Michael J. Dawes

Thin diamond film coated WC-Co cutting tool inserts were produced using arc-jet and hot-filament chemical vapor deposition. The diamond films were characterized using SEM, XRD, and Raman spectroscopy to examine crystal structure, fracture mode, thickness, crystalline orientation, diamond quality, and residual stress. The performance of the tools was evaluated by comparing the wear resistance of the materials to brazed polycrystalline diamond-tipped cutting tool inserts (PCD) while machining A390 aluminum (18% silicon). Results from the experiments carried out in this study suggest that the wear resistance of the thin diamond films is primarily related to the grain boundary strength, crystal orientation, and the density of microdefects in the diamond film.


1994 ◽  
Vol 3 (4-6) ◽  
pp. 618-622 ◽  
Author(s):  
Takashi Sugino ◽  
Kiyoshi Karasutani ◽  
Fumihiro Mano ◽  
Hiroya Kataoka ◽  
Junji Shirafuji ◽  
...  

2018 ◽  
Vol 44 (15) ◽  
pp. 17845-17851 ◽  
Author(s):  
Kang An ◽  
Liangxian Chen ◽  
Xiongbo Yan ◽  
Xin Jia ◽  
Jinlong Liu ◽  
...  

2008 ◽  
Vol 375-376 ◽  
pp. 92-96 ◽  
Author(s):  
Wen Zhuang Lu ◽  
Dun Wen Zuo ◽  
Min Wang ◽  
Feng Xu

Electroplated Cr, Ni and Cu were used as interlayer for chemical vapor deposition (CVD) diamond coating on WC–Co cemented carbide cutting tools. The electroplated interlayers were studied by Scanning Electron Microscope (SEM), Electron Probe Micro Analyzer (EPMA) and X-ray diffraction (XRD). The CVD diamond coatings were studied by SEM and Raman Scattering Spectroscopy (Raman). The experimental results show that there is diffusion bonded interface between electroplated layer and WC-Co substrate after H plasma treatment, the bond between electroplated layers and WC-Co substrate changes from mechanical bond to metallurgical bond and the adhesion becomes stronger. Electroplated Cr interlayer forms new phases of Cr3C2 and Cr7C3 under CVD conditions, while electroplated Ni and Cu interlayers do not form carbides under CVD conditions. Cr carbides have good chemical compatibility to diamond, and they are propitious to diamond nucleation and growth during the deposition period. The diamond crystal microstructure, diamond quality and adhesion on Cr interlayer are better than those on electroplated Ni and Cu interlayers.


2013 ◽  
Vol 845 ◽  
pp. 36-40
Author(s):  
Tze Mi Yong ◽  
Esah Hamzah

Multi-layer alternating nanocrystalline diamond (NCD) layer and polycrystalline diamond (PCD) layer was successfully deposited on pretreated tungsten carbide (WC) substrates with various seeding sizes (<0.1μm synthetic, <0.5μm synthetic, <0.25μm natural, <0.5μm natural, and <1μm natural) diamond with and without hammering by silicon carbide. X-rays penetrate through the coating to the substrate from XRD method was able to show strong peaks of diamond relative to WC despite the diamond film being 4μm thick only. It is found that substrates with no hammering produce stronger signals. The coating was cross sectioned and analysed using field emission scanning electron microscopy showing the multi-layer with NCD grains that has coalesced and columnar structure for PCD. None of the diamond coating delaminated during cross sectioning showing good adhesion. Raman was able to capture data from the 1-1.6μm thick NCD layer only while AFM measured the extreme low roughness of the NCD surface.


2000 ◽  
Vol 87 (10) ◽  
pp. 7508-7518 ◽  
Author(s):  
Jae Yeob Shim ◽  
Hong Koo Baik ◽  
Kie Moon Song

Sign in / Sign up

Export Citation Format

Share Document