scholarly journals Observations on the Surface Structure of Aurelia solida (Scyphozoa) Polyps and Medusae

Diversity ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 244
Author(s):  
Valentina Turk ◽  
Ana Fortič ◽  
Maja Kos Kramar ◽  
Magda Tušek Žnidarič ◽  
Jasna Štrus ◽  
...  

The surface structures and mucus layers that form an interface between the epithelial layer of organisms and their external environment were studied in the bloom-forming moon jellyfish (Aurelia solida, Scyphozoa) from the northern Adriatic. The surface of the polyps revealed epithelial ciliated cells and numerous nematocysts, both non-discharged and discharged. Cilia were also the most prominent features on the surface of adult medusa, protruding from the epidermal cells and with microvilli surrounding the base. Histochemical methods and various microscopy techniques (light/epifluorescence and electron microscopy) confirmed the presence of abundant mucus around polyps and on the surfaces of adult medusa, and that the mucus contained acidic and neutral mucins. The observed mucus secretions on the exumbrella surface of the medusae were in the form of granules, flocs, and sheets. Scanning electron microscopy and transmission electron microscopy analyses confirmed the presence of various microbes in the mucus samples, but not on the epithelial surfaces of the polyps or the exumbrella of the medusae.

Author(s):  
Jane A. Westfall ◽  
S. Yamataka ◽  
Paul D. Enos

Scanning electron microscopy (SEM) provides three dimensional details of external surface structures and supplements ultrastructural information provided by transmission electron microscopy (TEM). Animals composed of watery jellylike tissues such as hydras and other coelenterates have not been considered suitable for SEM studies because of the difficulty in preserving such organisms in a normal state. This study demonstrates 1) the successful use of SEM on such tissue, and 2) the unique arrangement of batteries of nematocysts within large epitheliomuscular cells on tentacles of Hydra littoralis.Whole specimens of Hydra were prepared for SEM (Figs. 1 and 2) by the fix, freeze-dry, coat technique of Small and Màrszalek. The specimens were fixed in osmium tetroxide and mercuric chloride, freeze-dried in vacuo on a prechilled 1 Kg brass block, and coated with gold-palladium. Tissues for TEM (Figs. 3 and 4) were fixed in glutaraldehyde followed by osmium tetroxide. Scanning micrographs were taken on a Cambridge Stereoscan Mark II A microscope at 10 KV and transmission micrographs were taken on an RCA EMU 3G microscope (Fig. 3) or on a Hitachi HU 11B microscope (Fig. 4).


Scanning ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-20 ◽  
Author(s):  
Antonia Moropoulou ◽  
Elisabetta Zendri ◽  
Pilar Ortiz ◽  
Ekaterini T. Delegou ◽  
Ioanna Ntoutsi ◽  
...  

Scanning microscopy techniques have emerged as powerful scientific tools for analysing materials of architectural or archaeological interest, since the commercialization of the first scanning electron microscopy instrumentation in the early 60s. This study is aimed at reviewing and highlighting the significance of several scanning microscopy techniques employed in the protection of built heritage. The diffusion of scanning electron microscopy with energy-dispersive X-ray spectroscopy analysis (SEM-EDX) is proven to be the widest among the available scanning microscopy techniques, while transmission electron microscopy (TEM) applications are steadily present in the field of built heritage protection. The building material characterization, the weathering mechanism investigation, and the development of compatible and performing conservation materials are some major research areas where the application of the aforementioned techniques is discussed. The range of techniques, along with aspects of instrumentation and sample preparation are, also, considered.


2000 ◽  
Vol 6 (2) ◽  
pp. 151-157 ◽  
Author(s):  
I. Hernando ◽  
I. Pérez-Munuera ◽  
M.A. Lluch

Electron microscopy has made a significant contribution to our knowledge of the structure of foods and the interaction among their components. In this paper, several electron microscopy techniques are applied to study the Burgos cheese microstructure. Burgos cheese samples fixed in glutaraldehyde and observed by scanning electron microscopy showed a continuous three-dimensional network of protein, with roundish empty spaces, which probably contained fat, whey or air in the original sample. Fixation in osmium tetroxide showed the distribution of fat, which is organized in globules (1-3 ltm in diameter). Water closely and uniformly interacting with proteins and the protein shells deposited around the fat globule membranes (0.2 pm thick) can be observed by cryo-scanning electron microscopy. Samples observed by transmission electron microscopy showed loosely or ' strongly aggregated proteins forming the continuous network. Furthermore, a core and lining structure were distinguished; this structure could be related to the presence of B-lactoglobulin. Finally, this technique allows observations of individual casein grains and the interstitial spaces among them.


2002 ◽  
Vol 75 (3) ◽  
pp. 511-526 ◽  
Author(s):  
Ronald W. Smith

Abstract This paper is a review of published literature containing some aspects of rubber product analysis using microscopy techniques. This includes close-up photography, photomicrography, photomicrography obtained from light optical microscope (LOM), scanning electron microscope (SEM) and transmission electron microscopy (TEM). Products represented are tires, belts, hoses, seals, rubber bands, balloons and some miscellaneous products such as a submarine hydrophone boot, rubber mat, shoe soles, tire curing bladder, and roofing membrane.


Author(s):  
P.J. Dailey

The structure of insect salivary glands has been extensively investigated during the past decade; however, none have attempted scanning electron microscopy (SEM) in ultrastructural examinations of these secretory organs. This study correlates fine structure by means of SEM cryofractography with that of thin-sectioned epoxy embedded material observed by means of transmission electron microscopy (TEM).Salivary glands of Gromphadorhina portentosa were excised and immediately submerged in cold (4°C) paraformaldehyde-glutaraldehyde fixative1 for 2 hr, washed and post-fixed in 1 per cent 0s04 in phosphosphate buffer (4°C for 2 hr). After ethanolic dehydration half of the samples were embedded in Epon 812 for TEM and half cryofractured and subsequently critical point dried for SEM. Dried specimens were mounted on aluminum stubs and coated with approximately 150 Å of gold in a cold sputtering apparatus.Figure 1 shows a cryofractured plane through a salivary acinus revealing topographical relief of secretory vesicles.


Author(s):  
Nakazo Watari ◽  
Yasuaki Hotta ◽  
Yoshio Mabuchi

It is very useful if we can observe the identical cell elements within the same sections by light microscopy (LM), transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM) sequentially, because, the cell fine structure can not be indicated by LM, while the color is; on the other hand, the cell fine structure can be very easily observed by EM, although its color properties may not. However, there is one problem in that LM requires thick sections of over 1 μm, while EM needs very thin sections of under 100 nm. Recently, we have developed a new method to observe the same cell elements within the same plastic sections using both light and transmission (conventional or high-voltage) electron microscopes.In this paper, we have developed two new observation methods for the identical cell elements within the same sections, both plastic-embedded and paraffin-embedded, using light microscopy, transmission electron microscopy and/or scanning electron microscopy (Fig. 1).


Author(s):  
J. D. Hutchison

When the transmission electron microscope was commercially introduced a few years ago, it was heralded as one of the most significant aids to medical research of the century. It continues to occupy that niche; however, the scanning electron microscope is gaining rapidly in relative importance as it fills the gap between conventional optical microscopy and transmission electron microscopy.IBM Boulder is conducting three major programs in cooperation with the Colorado School of Medicine. These are the study of the mechanism of failure of the prosthetic heart valve, the study of the ultrastructure of lung tissue, and the definition of the function of the cilia of the ventricular ependyma of the brain.


Author(s):  
Loren Anderson ◽  
Pat Pizzo ◽  
Glen Haydon

Transmission electron microscopy of replicas has long been used to study the fracture surfaces of components which fail in service. Recently, the scanning electron microscope (SEM) has gained popularity because it allows direct examination of the fracture surface. However, the somewhat lower resolution of the SEM coupled with a restriction on the sample size has served to limit the use of this instrument in investigating in-service failures. It is the intent of this paper to show that scanning electron microscopic examination of conventional negative replicas can be a convenient and reliable technique for determining mode of failure.


Author(s):  
A.J. Tousimis ◽  
T.R. Padden

The size, shape and surface morphology of human erythrocytes (RBC) were examined by scanning electron microscopy (SEM), of the fixed material directly and by transmission electron microscopy (TEM) of surface replicas to compare the relative merits of these two observational procedures for this type specimen.A sample of human blood was fixed in glutaraldehyde and washed in distilled water by centrifugation. The washed RBC's were spread on freshly cleaved mica and on aluminum coated microscope slides and then air dried at room temperature. The SEM specimens were rotary coated with 150Å of 60:40- gold:palladium alloy in a vacuum evaporator using a new combination spinning and tilting device. The TEM specimens were preshadowed with platinum and then rotary coated with carbon in the same device. After stripping the RBC-Pt-C composite film, the RBC's were dissolved in 2.5N HNO3 followed by 0.2N NaOH leaving the preshadowed surface replicas showing positive topography.


Author(s):  
J. C. Russ ◽  
E. McNatt

In order to study the retention of copper in cirrhotic liver, rats were made cirrhotic by carbon tetrachloride inhalation twice weekly for three months and fed 0.2% copper acetate ad libidum in drinking water for one month. The liver tissue was fixed in osmium, sectioned approximately 2000 Å thick, and stained with lead citrate. The section was examined in a scanning electron microscope (JEOLCO JSM-2) in the transmission electron mode.Figure 1 shows a typical area that includes a red blood cell in a sinusoid, a disse, and a portion of the cytoplasm of a hepatocyte which contains several mitochondria, peribiliary dense bodies, glycogen granules, and endoplasmic reticulum.


Sign in / Sign up

Export Citation Format

Share Document