scholarly journals Forty Years of the Applications of Stark Broadening Data Determined with the Modified Semiempirical Method

Data ◽  
2020 ◽  
Vol 5 (3) ◽  
pp. 73
Author(s):  
Milan S. Dimitrijević

The aim of this paper is to analyze the various uses of Stark broadening data for non-hydrogenic lines emitted from plasma, obtained with the modified semiempirical method formulated 40 years ago (1980), which are continuously implemented in the STARK-B database. In such a way one can identify research fields where they are applied and better see the needs of users in order to better plan future work. This is done by analysis of citations of the modified semiempirical method and the corresponding data in international scientific journals, excluding cases when they are used for comparison with other experimental or theoretical Stark broadening data or for development of the theory of Stark broadening. On the basis of our analysis, one can conclude that the principal applications of such data are in astronomy (white dwarfs, A and B stars, and opacity), investigations of laser produced plasmas, laser design and optimization and their applications in industry and technology (ablation, laser melting, deposition, plasma during electrolytic oxidation, laser micro sintering), as well as for the determination of radiative properties of various plasmas, plasma diagnostics, and investigations of regularities and systematic trends of Stark broadening parameters.

Atoms ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 29
Author(s):  
Sylvie Sahal-Bréchot

The present paper revisits the determination of the semi-classical limit of the Feshbach resonances which play a role in electron impact broadening (the so-called “Stark“ broadening) of isolated spectral lines of ionized atoms. The Gailitis approximation will be used. A few examples of results will be provided, showing the importance of the role of the Feshbach resonances.


2021 ◽  
Author(s):  
Stephanie Jones ◽  
Mohit Singh ◽  
Denis Duft ◽  
Alexei Kiselev ◽  
Thomas Leisner

<p>The impact of atmospheric aerosol on the climate remains poorly understood. Organic aerosol makes up a significant fraction of total aerosol and is prevalent throughout the atmosphere. It can exist as a liquid, semi-solid or amorphous solid. The viscosity of organic aerosol will have an impact on transformations that organic aerosol will undergo during its lifetime such as evaporation and growth, heterogeneous and photochemical reactions as well as the ability to act as an ice nucleating particle.  Therefore, it is of key importance to be able to determine aerosol viscosity over a range of atmospherically relevant conditions in order to better understand the impact of organic aerosol on the climate.</p> <p>Here we report proof of concept viscosity measurements of water droplets levitated in an electrodynamic balance over a range of temperatures. Charged droplets are levitated in a temperature and relative humidity-controlled environment allowing properties over a temperature range of 300 to 220 K to be studied. As the droplets evaporate they reach a point where Coulomb instabilities are induced resulting in droplet oscillations. The relaxation of these oscillations can then be probed to determine the droplet viscosity. Future work will involve determination of the viscosity of different types of organic aerosol over a broad temperature range.</p>


2021 ◽  
Author(s):  
Khaled Elsayed ◽  
Walid Tawfik ◽  
Ashraf E M Khater ◽  
Tarek S Kayed ◽  
Mohamed Fikry

Abstract This work represents a novel method to determine phosphorus (P) concentration in phosphogypsum (PG) waste samples using calibration-free laser-induced breakdown spectroscopy (LIBS). A 50 mJ Q-switched Nd: YAG laser has generated the PG LIBS spectrum. Spectroscopic analysis of plasma evolution has been characterized by electron density Ne and electron temperature Te using the emission intensity and stark broadening for P I characteristic lines 213.61, 214.91, and 215.40 nm under non-purged (air) and purged (helium) conditions. It was found that both Te and Ne have significant changes linearly with P concentrations 4195, 5288, 6293, and 6905 ppm. The values of plasma Te and Ne increased from about 6900 to 10000 K and 1.1×1017 to 3.4×1017 cm− 3, respectively, for the non-purged PG. On the other hand, Te and Ne ranged from 8200 to 11000 K and 1.4×1017 to 3.5×1017 cm− 3, respectively, for the PG purged with helium. It is concluded that Te and Ne values represent a fingerprint plasma characterization for a given P concentration in PG samples, which can be used to identify P concentration without a PG's complete analysis. These results demonstrate a new achievement in the field of spectrochemical analysis of environmental applications.


2018 ◽  
pp. 81-89
Author(s):  
Erika Martins de Carvalho ◽  
Roselene Ribeiro Riente ◽  
José Daniel Figueroa Villar

Various complexes of DHA with transition-metal cations are known for their antifungal properties. Here, four novel Zn and Cd complexes were prepared via the substitution of water by pyridine andg-picoline using Zn(DHA)2(H2O)2 (2) and Cd(DHA)2(H2O)2 (3) as starting materials. The products were characterized by IR, UV, elemental analysis, TGA and NMR techniques, including correlation times and intermolecular distance measurements using the NULL pulse sequence. The experimental data were compared to the molecular modeling results using DFT and the semiempirical method PM3, confirming that the pentacoordinated Zn complexes have bipyramidal geometry while the Cd complexes have the expected octahedral geometry. These results show that substitution of Zn by Cd leads to an important modification of the coordination structure, especially when strong ligands are involved.


Author(s):  
Ghaith Ghanim Al-Ghazal ◽  
Philip Bonello ◽  
Sergio G. Torres Cedillo

Abstract Recently, there has been a focus on the use of inverse problem techniques in order to monitor rotor unbalance, and obtain a balancing solution, from vibration measurements on the casing and prior knowledge of the rotor-casing structure. In certain practical configurations that use nonlinear bearings like the squeeze-film damper (SFD) bearing, an inverse model of the bearing is an important part of the unbalance identification process. The inverse bearing model is used to estimate the journal vibration from casing vibration measurements, thus acting as a substitute for internal instrumentation in applications where the rotor is not accessible under operational conditions. Previous research has shown that an inverse bearing model can be identified using a trained Recurrent Neural Network (RNN) from experimental input/output data. However, the RNN was both trained and validated under simulated rotational conditions, wherein the motion was driven by two orthogonally-phased perpendicular shakers. In this paper, a RNN of an inverse bearing model that is identified from experimental data generated under simulated rotational conditions is validated under actual rotational (i.e. unbalance-driven) vibration conditions. The necessary modifications to the test rig are presented, together with the identification/training procedure. The results of the validation tests show that the RNN is capable of predicting the frequency spectrum of the dynamic nonlinear response of the journal with reasonable accuracy. This inverse SFD bearing model can be thus used in a future work to identify rotor unbalance.


Author(s):  
Nurul Zuhairah Mahmud Zuhudi ◽  
Afiq Faizul Zulkifli ◽  
Muzafar Zulkifli ◽  
Ahmad Naim Ahmad Yahaya ◽  
Nurhayati Mohd Nur ◽  
...  

In this paper, a short review on the void and moisture content studies of fiber reinforced composites for both, synthetic and natural based fibers are presented. The review summarized the research papers in which include experimental and theoretical works that related to the void and moisture content studies. In addition to that, this review paper highlighting a few research studies conducted in literature on the effects of the void and moisture on the mechanical performances of the composite. Few common measurement methods used for the void and moisture determination are discussed here. The aims of this short review, mainly to capture the trend ranging from the recent five years back and summarize the various studies and also to compare and conclude the most common method for the determination of the void and moisture content. This paper is mainly providing a baseline in the selection of the methods for the future work of the author’s work with regard to the reduction of the presence of voids and moisture occur during the impregnation process of fiber reinforced composites, especially when using natural-based fiber.


1984 ◽  
Vol 2 (4) ◽  
pp. 449-465 ◽  
Author(s):  
C. Deutsch

This survey is devoted to a few basic atomic problems associated with the stopping of nonrelativistic pointlike ions in dense and hot matter, and also to the Stark broadening diagnostics of the resulting beam-produced plasmas.First, we consider the free electron contribution, taken in the RPA approximation with an exact dynamic dielectric function, valid at any temperature. Therefore, we obtain stopping power and straggling for any projectile velocity. The temperature dependence is of special relevance for a projectile energy smaller than 5 MeV/a.m.u.Next, we revise the Barkas effect (Z3 corrections) through a novel and compact formulation, which is based on an analogy with electron impact broadening theory. It facilitates inclusion of the non hydrogenic and electronic structure of the target ions, in a more selective way. The results may increase the usual Z2-stopping by 15 to 30 per cent corrections.Then, we show how the Stark broadening diagnostics of the compressed D + T fuel, seeded with high Z species, arising from the surrounding envelopes, may provide accurate determination of the electron number density ne. In this connection, it should be appreciated that the relatively long compression times (≃ 20 nsec) suggested by the HIBALL numerical simulation allow for a nearly Local Thermodynamic Equilibrium (LTE) state in the target, with Te ≃ Ti. As a consequence, spectroscopic measurements are expected to be easier to implement in HIF targets, than in laser ones.A tentative proposal for the use of Stark broadening diagnostics of inflight excited and highly stripped ion projectiles is displayed in § 5.Experiments involving an HIB produced by a standard accelerator, and interacting with an independently produced coronal plasma are finally outlined.


2021 ◽  
Author(s):  
Flor Vermassen ◽  
Helen K. Coxall ◽  
Gabriel West ◽  
Matt O'Regan

<p>Harsh environmental and taphonomic conditions in the central Arctic Ocean make age-modelling for Quaternary palaeoclimate reconstructions challenging. Pleistocene age models in the Arctic have relied heavily on cyclostratigraphy using lithologic variability tied to relatively poorly calibrated foraminifera biostratigraphic events. Recently, the identification of <em>Pseudoemiliania lacunosa</em> in a sediment core from the Lomonosov Ridge, a coccolithophore that went extinct during marine isotope stage (MIS) 12 (478-424 ka), has been used to delineate glacial-interglacial units back to MIS 14 (~500 ka BP). Here we present a comparative study on how this nannofossil biostratigraphy fits with existing foraminifer biohorizons that are recognised in central Arctic Ocean sediments. A new core from the Alpha Ridge is presented, together with its lithologic variability and down-core compositional changes in planktonic and benthic foraminifera. The core exhibits an interval dominated by <em>Turborotalita egelida</em>, a planktonic foraminifer that is increasingly being adopted as a marker for MIS11 in sediment cores from the Amerasian Basin of the Arctic Ocean. We show that the new age-constraints provided by calcareous nannofossils are difficult to reconcile with the proposed MIS 11 age for the <em>T. egelida</em> horizon. Instead, the emerging litho- and coccolith biostratigraphy implies that Amerasian Basin sediments predating MIS5 are older than the egelida-based age models suggest, i.e. that the <em>T. egelida</em> Zone is older than MIS11. These results expose uncertainties regarding the age determination of glacial-interglacial cycles in the Amerasian basin and point out that future work is required to reconcile the micro- and nannofossil biostratigraphy of the Amerasian and Eurasian basin.</p>


Sign in / Sign up

Export Citation Format

Share Document