scholarly journals Investigation of Patient-Specific Maxillofacial Implant Prototype Development by Metal Fused Filament Fabrication (MF3) of Ti-6Al-4V

2021 ◽  
Vol 9 (10) ◽  
pp. 109
Author(s):  
Mohammad Qasim Shaikh ◽  
Subrata Deb Nath ◽  
Arulselvan Arumugam Akilan ◽  
Saleh Khanjar ◽  
Vamsi Krishna Balla ◽  
...  

Additive manufacturing (AM) and related digital technologies have enabled several advanced solutions in medicine and dentistry, in particular, the design and fabrication of patient-specific implants. In this study, the feasibility of metal fused filament fabrication (MF3) to manufacture patient-specific maxillofacial implants is investigated. Here, the design and fabrication of a maxillofacial implant prototype in Ti-6Al-4V using MF3 is reported for the first time. The cone-beam computed tomography (CBCT) image data of the patient’s oral anatomy was digitally processed to design a 3D CAD model of the hard tissue and fabricate a physical model by stereolithography (SLA). Using the digital and physical models, bone loss condition was analyzed, and a maxillofacial implant initial design was identified. Three-dimensional (3D) CAD models of the implant prototypes were designed that match the patient’s anatomy and dental implant requirement. In this preliminary stage, the CAD models of the prototypes were designed in a simplified form. MF3 printing of the prototypes was simulated to investigate potential deformation and residual stresses. The patient-specific implant prototypes were fabricated by MF3 printing followed by debinding and sintering using a support structure for the first time. MF3 printed green part dimensions fairly matched with simulation prediction. Sintered parts were characterized for surface integrity after cutting the support structures off. An overall 18 ± 2% shrinkage was observed in the sintered parts relative to the green parts. A relative density of 81 ± 4% indicated 19% total porosity including 11% open interconnected porosity in the sintered parts, which would favor bone healing and high osteointegration in the metallic implants. The surface roughness of Ra: 18 ± 5 µm and a Rockwell hardness of 6.5 ± 0.8 HRC were observed. The outcome of the work can be leveraged to further investigate the potential of MF3 to manufacture patient-specific custom implants out of Ti-6Al-4V.

2021 ◽  
Vol 11 (4) ◽  
pp. 145
Author(s):  
Nenad Bojcetic ◽  
Filip Valjak ◽  
Dragan Zezelj ◽  
Tomislav Martinec

The article describes an attempt to address the automatized evaluation of student three-dimensional (3D) computer-aided design (CAD) models. The driving idea was conceptualized under the restraints of the COVID pandemic, driven by the problem of evaluating a large number of student 3D CAD models. The described computer solution can be implemented using any CAD computer application that supports customization. Test cases showed that the proposed solution was valid and could be used to evaluate many students’ 3D CAD models. The computer solution can also be used to help students to better understand how to create a 3D CAD model, thereby complying with the requirements of particular teachers.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Erfan Rezvani Ghomi ◽  
Saeideh Kholghi Eshkalak ◽  
Sunpreet Singh ◽  
Amutha Chinnappan ◽  
Seeram Ramakrishna ◽  
...  

Purpose The potential implications of the three-dimensional printing (3DP) technology are growing enormously in the various health-care sectors, including surgical planning, manufacturing of patient-specific implants and developing anatomical models. Although a wide range of thermoplastic polymers are available as 3DP feedstock, yet obtaining biocompatible and structurally integrated biomedical devices is still challenging owing to various technical issues. Design/methodology/approach Polyether ether ketone (PEEK) is an organic and biocompatible compound material that is recently being used to fabricate complex design geometries and patient-specific implants through 3DP. However, the thermal and rheological features of PEEK make it difficult to process through the 3DP technologies, for instance, fused filament fabrication. The present review paper presents a state-of-the-art literature review of the 3DP of PEEK for potential biomedical applications. In particular, a special emphasis has been given on the existing technical hurdles and possible technological and processing solutions for improving the printability of PEEK. Findings The reviewed literature highlighted that there exist numerous scientific and technical means which can be adopted for improving the quality features of the 3D-printed PEEK-based biomedical structures. The discussed technological innovations will help the 3DP system to enhance the layer adhesion strength, structural stability, as well as enable the printing of high-performance thermoplastics. Originality/value The content of the present manuscript will motivate young scholars and senior scientists to work in exploring high-performance thermoplastics for 3DP applications.


Author(s):  
Deepesh Khandelwal ◽  
T. Kesavadas

Abstract Solid Freeform Fabrication (SFF) techniques in recent years have shown tremendous promise in reducing the design time of products. This technique enables designers to get three-dimensional physical prototypes from 3D CAD models. Although SFF has gained popularity, the manufacturing time and cost have limited its use to small and medium sized parts. In this paper we have proposed a novel concept for rapidly building SFF parts by inserting prefabricated inserts into the fabricated part. A computational algorithm was developed for determining ideal placement of inserts/cores in the CAD model of the part being prototyped using a heuristic optimization technique called Simulated Annealing. This approach will also allow the designers to build multi-material prototypes using the Rapid Prototyping (RP) technique. By using cheaper pre-fabricates instead of costly photopolymers, the production cost of the SFFs can be reduced. Additionally it will also reduce build time, resulting in efficient machine utilization.


Author(s):  
Shaw C. Feng ◽  
Yan Lu ◽  
Albert T. Jones

Abstract The number and types of measurement devices used for monitoring and controlling Laser-Based Powder Bed Fusion of Metals (PBF-LB/M) processes and inspecting the resulting AM metal parts have increased rapidly in recent years. The variety of the data collected by such devices has increased, and the veracity of the data has decreased simultaneously. Each measurement device generates data in a unique coordinate system and in a unique data type. Data alignment, however, is required before 1) monitoring and controlling PBF-LB/M processes, 2) predicting the material properties of the final part, and 3) qualifying the resulting AM parts can be done. Aligned means all data must be transformed into a single coordinate system. In this paper, we describe a new, general data-alignment procedure and an example based on PBF-LB/M processes. The specific data objects used in this example include in-situ photogrammetry, thermography, ex-situ X-ray computed tomography (XCT), coordinate metrology, and computer-aided design (CAD) models. We propose a data-alignment procedure to align the data from melt pool images, scan paths, layer images, XCT three-dimensional (3D) model, coordinate measurements, and the 3D CAD model.


Author(s):  
Cong Hong Phong Nguyen ◽  
Young Choi

The lightweight representation of three-dimensional computer-aided design (3D CAD) models has drawn much attention from researchers as its usefulness in collaborative product development is vast. Existing approaches are mostly based on feature depression or mesh-based simplification. In this article, a new approach for 3D CAD lightweight representation based on combining triangular mesh representation and boundary representation (B-rep) is proposed. The corresponding data structure as well as the conversion method from original data given in B-rep was developed. Considered as an essential application in collaborative product development, a case study on the visualization process of large-scale assembly models represented in the proposed lightweight representation was also conducted. The validation of the approach was performed via experiments with 3D CAD models in SAT format and by benchmarking with the conventional all-faceted approach with the same level of mesh resolution.


Author(s):  
Navaneetha Krishnan Rajan ◽  
Zeying Song ◽  
Kenneth R. Hoffmann ◽  
Marek Belohlavek ◽  
Eileen M. McMahon ◽  
...  

The left ventricle (LV) of a human heart receives oxygenated blood from the lungs and pumps it throughout the body via the aortic valve. Characterizing the LV geometry, its motion, and the ventricular flow is critical in assessing the heart’s health. An automated method has been developed in this work to generate a three-dimensional (3D) model of the LV from multiple-axis echocardiography (echo). Image data from three long-axis sections and a basal section is processed to compute spatial nodes on the LV surface. The generated surfaces are output in a standard format such that it can be imported into the curvilinear-immersed boundary (CURVIB) framework for numerical simulation of the flow inside the LV. The 3D LV model can be used for better understanding of the ventricular motion and the simulation framework provides a powerful tool for studying left ventricular flows on a patient specific basis. Future work would incorporate data from additional cross-sectional images.


2021 ◽  
Author(s):  
Abhishek Bhardwaj

<div>Added substance Manufacturing (AM) of metallic designs is a warm cycle of layer by layer metal added substance fabricating measure produces parts straightforwardly from 3D CAD models. In this assembling interaction confined electrochemical affidavit joins with the added substance producing technique to make metal parts at room temperature. In this paper, the attainability of Mask-less Electrochemical Additive Manufacturing (ECAM), as a non-warm interaction is considered. Layer by layer testimony has been finished utilizing the electrochemical tips to make nickel microstructures. All the while beat wave qualities and their impacts on affidavit have been considered. </div><div>Confined electrodeposition (LED) was investigated as an AM the interaction with high power over measure boundaries and yield boundaries. The confinement of electrodeposition is completed by utilizing Ultra microelectrodes (UME) and low tossing power electrolytes. Variety in some cycle boundaries, for example, voltage and terminal hole are found to have a high impact on yield boundaries like thickness. The reproductions can anticipate the yield width of affidavit of analyses with a blunder of 8- 30%, so it can possibly apply as an added substance-producing strategy of complex three-dimensional (3D) parts on the microscale.</div>


2001 ◽  
Vol 123 (05) ◽  
pp. 58-60 ◽  
Author(s):  
Jean Thilmany

This article discusses that a starch printer, commonly referred to as a three-dimensional printer, serves as a way to make physical models from 3D CAD files. The rapid engineering and 3D printing methods are frequently used in conjunction with a host of compatible technologies, notably a scanning technology that brings physical objects—including items produced by a 3D printer—back into the digital realm. Engineers make use of this form of scanning technology to digitize a complex item that they would have a hard time reverse engineering any other way. Others might use it to digitize 3D artwork such as sculptures to capture a long-term, digital archive of important cultural artifacts. Rapid prototyping at DaimlerChrysler takes place in the vehicle engineering operations mock-up department, among other places. The group builds physical models of parts for the engineers who designed them. Models might range from an individual part to a full-scale mock-up of the entire vehicle.


Author(s):  
Yanglong Lu ◽  
Eduard Shevtshenko ◽  
Yan Wang

Abstract Sensors play an important role in monitoring manufacturing processes and update their digital twins. However, the data transmission bandwidth and sensor placement limitations in the physical systems may not allow us to collect the amount or the type of data that we wish. Recently, a physics based compressive sensing (PBCS) approach was proposed to monitor manufacturing processes and obtain high-fidelity information with the reduced number of sensors by incorporating physical models of processes in compressed sensing. It can recover and reconstruct complete three-dimensional temperature distributions based on some limited measurements. In this paper, a constrained orthogonal matching pursuit algorithm is developed for PBCS, where coherence exists between the measurement matrix and basis matrix. The efficiency of recovery is improved by introducing a boundary-domain reduction approach, which reduces the size of PBCS model matrices during the inverse operations. The improved PBCS method is demonstrated with the measurement of temperature distributions in the cooling and real-time printing processes of fused filament fabrication.


2017 ◽  
Vol 25 (1) ◽  
pp. 230949901668407 ◽  
Author(s):  
Tak Man Wong ◽  
Jimmy Jin ◽  
Tak Wing Lau ◽  
Christian Fang ◽  
Chun Hoi Yan ◽  
...  

Three-dimensional (3-D) printing or additive manufacturing, an advanced technology that 3-D physical models are created, has been wildly applied in medical industries, including cardiothoracic surgery, cranio-maxillo-facial surgery and orthopaedic surgery. The physical models made by 3-D printing technology give surgeons a realistic impression of complex structures, allowing surgical planning and simulation before operations. In orthopaedic surgery, this technique is mainly applied in surgical planning especially revision and reconstructive surgeries, making patient-specific instruments or implants, and bone tissue engineering. This article reviews this technology and its application in orthopaedic surgery.


Sign in / Sign up

Export Citation Format

Share Document