scholarly journals A Synopsis of Signaling Crosstalk of Pericytes and Endothelial Cells in Salivary Gland

2021 ◽  
Vol 9 (12) ◽  
pp. 144
Author(s):  
Ioana Cucu ◽  
Mihnea Ioan Nicolescu

The salivary gland (SG) microvasculature constitutes a dynamic cellular organization instrumental to preserving tissue stability and homeostasis. The interplay between pericytes (PCs) and endothelial cells (ECs) culminates as a key ingredient that coordinates the development, maturation, and integrity of vessel building blocks. PCs, as a variety of mesenchymal stem cells, enthrall in the field of regenerative medicine, supporting the notion of regeneration and repair. PC-EC interconnections are pivotal in the kinetic and intricate process of angiogenesis during both embryological and post-natal development. The disruption of this complex interlinkage corresponds to SG pathogenesis, including inflammation, autoimmune disorders (Sjögren’s syndrome), and tumorigenesis. Here, we provided a global portrayal of major signaling pathways between PCs and ECs that cooperate to enhance vascular steadiness through the synergistic interchange. Additionally, we delineated how the crosstalk among molecular networks affiliate to contribute to a malignant context. Additionally, within SG microarchitecture, telocytes and myoepithelial cells assemble a labyrinthine companionship, which together with PCs appear to synchronize the regenerative potential of parenchymal constituents. By underscoring the intricacy of signaling cascades within cellular latticework, this review sketched a perceptive basis for target-selective drugs to safeguard SG function.

Author(s):  
Francesca Pagani ◽  
Elisa Tratta ◽  
Patrizia Dell’Era ◽  
Manuela Cominelli ◽  
Pietro Luigi Poliani

AbstractEarly B-cell factor-1 (EBF1) is a transcription factor with an important role in cell lineage specification and commitment during the early stage of cell maturation. Originally described during B-cell maturation, EBF1 was subsequently identified as a crucial molecule for proper cell fate commitment of mesenchymal stem cells into adipocytes, osteoblasts and muscle cells. In vessels, EBF1 expression and function have never been documented. Our data indicate that EBF1 is highly expressed in peri-endothelial cells in both tumor vessels and in physiological conditions. Immunohistochemistry, quantitative reverse transcription polymerase chain reaction (RT-qPCR) and fluorescence-activated cell sorting (FACS) analysis suggest that EBF1-expressing peri-endothelial cells represent bona fide pericytes and selectively express well-recognized markers employed in the identification of the pericyte phenotype (SMA, PDGFRβ, CD146, NG2). This observation was also confirmed in vitro in human placenta-derived pericytes and in human brain vascular pericytes (HBVP). Of note, in accord with the key role of EBF1 in the cell lineage commitment of mesenchymal stem cells, EBF1-silenced HBVP cells showed a significant reduction in PDGFRβ and CD146, but not CD90, a marker mostly associated with a prominent mesenchymal phenotype. Moreover, the expression levels of VEGF, angiopoietin-1, NG2 and TGF-β, cytokines produced by pericytes during angiogenesis and linked to their differentiation and activation, were also significantly reduced. Overall, the data suggest a functional role of EBF1 in the cell fate commitment toward the pericyte phenotype.


RSC Advances ◽  
2021 ◽  
Vol 11 (30) ◽  
pp. 18685-18692
Author(s):  
Hiroki Masuda ◽  
Yoshinori Arisaka ◽  
Masahiro Hakariya ◽  
Takanori Iwata ◽  
Tetsuya Yoda ◽  
...  

Molecular mobility of polyrotaxane surfaces promoted mineralization in a co-culture system of mesenchymal stem cells and endothelial cells.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1078
Author(s):  
Han Young Kim ◽  
Suk Ho Bhang

As a tissue regeneration strategy, the utilization of mesenchymal stem cells (MSCs) has drawn considerable attention. Comprehensive research using MSCs has led to significant preclinical or clinical outcomes; however, improving the survival rate, engraftment efficacy, and immunogenicity of implanted MSCs remains challenging. Although MSC-derived exosomes were recently introduced and reported to have great potential to replace conventional MSC-based therapeutics, the poor production yield and heterogeneity of exosomes are critical hurdles for their further applications. Herein, we report the fabrication of exosome-mimetic MSC-engineered nanovesicles (MSC-NVs) by subjecting cells to serial extrusion through filters. The fabricated MSC-NVs exhibit a hydrodynamic size of ~120 nm, which is considerably smaller than the size of MSCs (~30 μm). MSC-NVs contain both MSC markers and exosome markers. Importantly, various therapeutic growth factors originating from parent MSCs are encapsulated in the MSC-NVs. The MSC-NVs exerted various therapeutic effects comparable to those of MSCs. They also significantly induced the angiogenesis of endothelial cells and showed neuroprotective effects in damaged neuronal cells. The results collectively demonstrate that the fabricated MSC-NVs can serve as a nanosized therapeutic agent for tissue regeneration.


2013 ◽  
Vol 33 (suppl_1) ◽  
Author(s):  
Sami G Almalki ◽  
Velidi Rao ◽  
Divya Pankajakshan ◽  
Devendra K Agrawal

Rationale Adipose-derived mesenchymal stem cells (ADMSCs) are multipotent cells that have the potential to differentiate into different cell linages, and represent promising tools in various clinical applications. However, the molecular mechanisms that control the ability of ADMSCs to remodel 3-dimensional extracellular matrix (ECM) barriers during differentiation are not clearly understood. Herein, we studied the expression of matrix metalloproteinases (MMPs) during the differentiation of ADMSCs to endothelial cells (ECs) in vitro . Methods MSCs were isolated from porcine abdominal adipose tissue, and characterized by positive staining for MSC markers, CD44, CD73, CD90, and negative staining for CD11b, CD34 and CD45. The plasticity of MSCs was detected by bi-lineage differentiation to osteocytes, and adipocytes. The mRNA transcripts for different MMPs and TIMPs and protein expression of EC markers were analyzed by RT-PCR and immunostaining. The enzyme activity and protein expression were also analyzed by gelatin zymography, ELISA, and Western blot. Results The differentiation of ADMSCs to ECs was confirmed by the positive staining and mRNA expression of the endothelial markers. The mRNA transcripts for MMP-2 and membrane type 1 MMP (MT1-MMP) was significantly increased by 2.5 and 2.0 fold, respectively, during the differentiation of MSCs into ECs. Western blot and ELISA showed an elevated MT1-MMP and MMP-2 expression. The enzyme activity of MMP-2 was also observed by gelatin zymography. Conclusion We demonstrated that porcine ADMSCs have the ability to differentiate into ECs, and this process involves the up-regulation of MMP-2 and MT1-MMP. The increase in the expression of MMP-2 and MT1-MMP may, at least partially, facilitate the change in morphology of MSCs by degrading the ECM barriers. These findings may provide a potential mechanism for the role of MMP2 and MT1-MMP in the differentiation of ADMSCs into ECs.


2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Sangho Lee ◽  
Min Kyung Lee ◽  
Hyunjoon Kong ◽  
Young-sup Yoon

Various hydrogels are used to create vascular structure in vitro or to improve cell engraftment to overcome low cell survival in vivo, a main hurdle for bare cell therapy Recently we developed a modified alginate hydrogel within which microchannels are aligned to guide the direction and spatial organization of loaded cells. We investigated whether these cell constructs in which HUVECs and human mesenchymal stem cells (hMSCs) are co-loaded in this novel microchanneled hydrogel facilitate formation of vessels in vitro and in vivo, and enhance recovery of hindlimb ischemia. We crafted a modified alginate hydrogel which has microchannels, incorporates a cell adhesion peptide RGD, and was encapsulated with VEGF. We then compared vascular structure formation between the HUVEC only (2 x 105 cells) group and the HUVEC plus hMSC group. In the HUVEC+hMSC group, we mixed HUVECs and hMSCs at the ratio of 3:1. For cell tracking, we labeled HUVECs with DiO, a green fluorescence dye. After loading cells into the microchannels of the hydrogel, these constructs were cultured for seven days and were examined by confocal microscopy. In the HUVEC only group, HUVECs stands as round shaped cells without forming tubular structures within the hydrogel. However, in the HUVEC+hMSC group, HUVECs were stretched out and connected with each other, and formed vessel-like structure following pre-designed microchannels. These results suggested that hMSCs play a critical role for vessel formation by HUVECs. We next determined their in vivo effects using a mouse hindlimb ischemia model. We found that engineered HUVEC+hMSC group showed significantly higher perfusion over 4 weeks compared to the engineered HUVEC only group or bare cell (HUVEC) group. Confocal microscopic analysis of harvested tissues showed more robust vessel formation within and outside of the cell constructs and longer term cell survival in HUVEC+hMSC group compared to the other groups. In conclusion, this novel microchanneled alginate hydrogel facilitates aligned vessel formation of endothelial cells when combined with MSCs. This vessel-embedded hydrogel constructs consisting of HUVECs and MSCs contribute to perfusable vessel formation, prolong cell survival in vivo, and are effective for recovering limb ischemia.


2017 ◽  
Vol 7 (1) ◽  
pp. 176
Author(s):  
Maryam Sadat Nezhadfazel ◽  
Kazem Parivar ◽  
Nasim Hayati Roodbari ◽  
Mitra Heydari Nasrabadi

Omentum mesenchymal stem cells (OMSCs) could be induced to differentiate into cell varieties under certain conditions. We studied differentiation of OMSCs induced by using placenta extract in NMRI mice. Mesenchymal stem cells (MSCs) were isolated from omentum and cultured with mice placenta extract. MSCs, were assessed after three passages by flow cytometry for CD90, CD44, CD73, CD105, CD34 markers and were recognized their ability to differentiate into bone and fat cell lines. Placenta extract dose was determined with IC50 test then OMSCs were cultured in DMEM and 20% placenta extract.The cell cycle was checked. OMSCs were assayed on 21 days after culture and differentiated cells were determined by flow cytometry and again processed for flow cytometry. CD90, CD44, CD73, CD105 markers were not expressed, only CD34 was their marker. OMSCs were morphologically observed. Differentiated cells are similar to the endothelial cells. Therefore, to identify differentiated cells, CD31 and FLK1 expression were measured. This was confirmed by its expression. G1 phase of the cell cycle shows that OMSCs compared to the control group, were in the differentiation phase. The reason for the differentiation of MSCs into endothelial cells was the sign of presence of VEGF factor in the medium too high value of as a VEGF secreting source.


Oncotarget ◽  
2017 ◽  
Vol 8 (28) ◽  
pp. 45200-45212 ◽  
Author(s):  
Min Gong ◽  
Bin Yu ◽  
Jingcai Wang ◽  
Yigang Wang ◽  
Min Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document