scholarly journals Assessing the Impact on Grid Infrastructure of Electrification Pathways for the Italian Residential Sector

Electricity ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 48-62
Author(s):  
Andrea Trabucchi ◽  
Lidia Premoli Vilà ◽  
Marco Borgarello ◽  
Giorgio Besagni

To achieve the decarbonization objectives described in the Paris Agreement, thermal appliances’ electrification is considered an essential factor. Unfortunately, the substitution of thermal appliances with electric alternatives will inevitably increase the load on the national electric system; thus, it is crucial to perform analyses to assess these policies’ impact. This paper, using as a reference the electrification pathways studied by Besagni et al. employing the MOIRAE (bottom-up MOdel to compute the energy consumption of the Italian REsidential sector) model, calculates the energy and power increase in the residential sector in 2030 due to the substitution of different thermal appliances and discusses potential policies to take into account the effect of their implementation on the Italian electric system. Even if the current generation capacity can sustain the electrification process without problems, investments will be needed to limit the possibility of congestions on transmission lines connecting the country’s northern and southern parts.

2016 ◽  
Vol 16 (2) ◽  
pp. 873-905 ◽  
Author(s):  
E. W. Butt ◽  
A. Rap ◽  
A. Schmidt ◽  
C. E. Scott ◽  
K. J. Pringle ◽  
...  

Abstract. Combustion of fuels in the residential sector for cooking and heating results in the emission of aerosol and aerosol precursors impacting air quality, human health, and climate. Residential emissions are dominated by the combustion of solid fuels. We use a global aerosol microphysics model to simulate the impact of residential fuel combustion on atmospheric aerosol for the year 2000. The model underestimates black carbon (BC) and organic carbon (OC) mass concentrations observed over Asia, Eastern Europe, and Africa, with better prediction when carbonaceous emissions from the residential sector are doubled. Observed seasonal variability of BC and OC concentrations are better simulated when residential emissions include a seasonal cycle. The largest contributions of residential emissions to annual surface mean particulate matter (PM2.5) concentrations are simulated for East Asia, South Asia, and Eastern Europe. We use a concentration response function to estimate the human health impact due to long-term exposure to ambient PM2.5 from residential emissions. We estimate global annual excess adult (>  30 years of age) premature mortality (due to both cardiopulmonary disease and lung cancer) to be 308 000 (113 300–497 000, 5th to 95th percentile uncertainty range) for monthly varying residential emissions and 517 000 (192 000–827 000) when residential carbonaceous emissions are doubled. Mortality due to residential emissions is greatest in Asia, with China and India accounting for 50 % of simulated global excess mortality. Using an offline radiative transfer model we estimate that residential emissions exert a global annual mean direct radiative effect between −66 and +21 mW m−2, with sensitivity to the residential emission flux and the assumed ratio of BC, OC, and SO2 emissions. Residential emissions exert a global annual mean first aerosol indirect effect of between −52 and −16 mW m−2, which is sensitive to the assumed size distribution of carbonaceous emissions. Overall, our results demonstrate that reducing residential combustion emissions would have substantial benefits for human health through reductions in ambient PM2.5 concentrations.


2017 ◽  
Vol 18 (7) ◽  
pp. 818-827 ◽  
Author(s):  
Jonathan Pickering ◽  
Jeffrey S. McGee ◽  
Tim Stephens ◽  
Sylvia I. Karlsson-Vinkhuyzen
Keyword(s):  
The Us ◽  

2021 ◽  
Author(s):  
Hamid Pourpak ◽  
Samuel Taubert ◽  
Marios Theodorakopoulos ◽  
Arnaud Lefebvre-Prudencio ◽  
Chay Pointer ◽  
...  

Abstract The Diyab play is an emerging unconventional play in the Middle East. Up to date, reservoir characterization assessments have proved adequate productivity of the play in the United Arab Emirates (UAE). In this paper, an advanced simulation and modeling workflow is presented, which was applied on selected wells located on an appraisal area, by integrating geological, geomechanical, and hydraulic fracturing data. Results will be used to optimize future well landing points, well spacing and completion designs, allowing to enhance the Stimulated Rock Volume (SRV) and its consequent production. A 3D static model was built, by propagating across the appraisal area, all subsurface static properties from core-calibrated petrophysical and geomechanical logs which originate from vertical pilot wells. In addition, a Discrete Fracture Network (DFN) derived from numerous image logs was imported in the model. Afterwards, completion data from one multi-stage hydraulically fracked horizontal well was integrated into the sector model. Simulations of hydraulic fracturing were performed and the sector model was calibrated to the real hydraulic fracturing data. Different scenarios for the fracture height were tested considering uncertainties related to the fracture barriers. This has allowed for a better understanding of the fracture propagation and SRV creation in the reservoir at the main target. In the last step, production resulting from the SRV was simulated and calibrated to the field data. In the end, the calibrated parameters were applied to the newly drilled nearby horizontal wells in the same area, while they were hydraulically fractured with different completion designs and the simulated SRVs of the new wells were then compared with the one calculated on the previous well. Applying a fully-integrated geology, geomechanics, completion and production workflow has helped us to understand the impact of geology, natural fractures, rock mechanical properties and stress regimes in the SRV geometry for the unconventional Diyab play. This work also highlights the importance of data acquisition, reservoir characterization and of SRV simulation calibration processes. This fully integrated workflow will allow for an optimized completion strategy, well landing and spacing for the future horizontal wells. A fully multi-disciplinary simulation workflow was applied to the Diyab unconventional play in onshore UAE. This workflow illustrated the most important parameters impacting the SRV creation and production in the Diyab formation for he studied area. Multiple simulation scenarios and calibration runs showed how sensitive the SRV can be to different parameters and how well placement and fracture jobs can be possibly improved to enhance the SRV creation and ultimately the production performance.


2014 ◽  
Vol 694 ◽  
pp. 163-168
Author(s):  
Liang Guo ◽  
Yun Liang ◽  
Xu Zhang ◽  
Xiao Tian Yang

With the rapid development of world economy, the energy crisis has become one of the urgent problems to be solved. Photovoltaic technology is a green new energy industry, no pollution is widely used all over the world. Typically, for photovoltaic component installation, only considering the utilization of components support cost and area, and the arrangement of components have not given enough attention. Photovoltaic module in use process will inevitably encounter the shadow, the shadow changes to make appropriate adjustments to the PV module arrangement can enhance the power generation capacity. Effect of the shadow on the photovoltaic system performance can be effectively used for photovoltaic component to bring help, is of positive significance. This study analyzed the villa model typical, and the rectangular shadow is modeling, in order to analyze the influence on the photovoltaic component. Through the conclusion of this study can determine the horizontal and vertical components of photovoltaic components which caused little damage, and provide a reference for future research of shadow and photovoltaic system performance.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jiaxiang Li ◽  
Biao Wang ◽  
Jian Sun ◽  
Shuhong Wang ◽  
Xiaohong Zhang ◽  
...  

Ice shedding causes transmission lines to vibrate violently, which induces a sharp increase in the longitudinal unbalanced tension of the lines, even resulting in the progressive collapse of transmission towers in serious cases, which is a common ice-based disaster for transmission tower-line systems. Based on the actual engineering characteristics of a 500 kV transmission line taken as the research object, a finite element model of a two-tower, three-line system is established by commercial ANSYS finite element software. In the modeling process, the uniform mode method is used to introduce the initial defects, and the collapse caused by ice shedding and its influencing parameters are systematically studied. The results show that the higher the ice-shedding height is, the greater the threat of ice shedding to the system; furthermore, the greater the span is, the shorter the insulator length and the greater the dynamic response of the line; the impact of ice shedding should be considered in the design of transmission towers.


Buildings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 566
Author(s):  
Khuram Pervez Amber ◽  
Rizwan Ahmad ◽  
Mina Farmanbar ◽  
Muhammad Anser Bashir ◽  
Sajid Mehmood ◽  
...  

In Pakistan, data for household electricity consumption are available in the form of monthly electricity bills only, and, therefore, are not helpful in establishing appliance-wise consumption. Further, it does not help in establishing the relationship among the household electricity consumption and various driving factors. This study aimed to unlock the household electricity consumption in Pakistan by analyzing electricity bills and investigating the impact of various socioeconomic, demographic, and dwelling parameters and usage of different appliances. The methodology adopted in this study was survey-based data collection of the residential sector. For this purpose, data were collected from 523 dwellings through surveys and interviews in Mirpur city. The results of the data analysis revealed that the average household electricity consumption is 2469 kWh/year with an average family size of seven and an average floor area of 78.91 m2. Based on possession of various appliances, the households were categorized into four types and their consumption patterns were established and compared. Air Conditioned (AC) houses consume 44% more electricity compared to the non-AC houses, whereas an Uninterrupted Power Supply (UPS) consumes electricity equivalent to an AC. The research findings are useful for policy makers and building designers and are discussed in the conclusion section.


2018 ◽  
Vol 76 (2) ◽  
pp. 121-139
Author(s):  
Kateřina Berková ◽  
Kristýna Krejčová ◽  
Alena Králová ◽  
Pavel Krpálek ◽  
Katarína Krpálková Krelová ◽  
...  

The research deals with the development of cognitive process dimensions in economic education. The aim is to research factors that influence academic achievement of students according to their intellectual level and grades. The researchers used quantitative design of research based on standardized assessment of intelligence and non-standardized questionnaire. The questionnaire was used to analyse the pedagogical competences of the teachers of economic subjects from the students' point of view in close relation to the teaching management and the impact on the motivation to learn and the achievement of students in these subjects. The respondents were 277 Czech students aged 16-17 who were divided into groups according to their intellectual level and grades. The data were analysed by a correlation analysis and a multiple regression model. In conclusion, the following can be stated: (a) From the point of view of the above average intelligent students, expertise can be considered as an important competency of the teacher; teaching average intelligent students, communication and presentation skills seem to be important. (b) It is desirable to develop cognitive processes, critical thinking actively, to lead students to become aware of changes in their own thinking and to orient them towards mastery goals. (c) Particularly for students with weaker results it is necessary to create intrinsic motivation, which develops cognition and thus is able to develop higher cognitive dimensions further. The links between these areas are of utmost importance for education and, above all, for developing of students' scholarship. Each student can be educated, and it is necessary to influence them to develop their personality and all of their potential abilities. The conceptual four-sector model represents the initial pathway to lead students who are differentiated according to the intellectual level and academic achievement to the active development of thinking, learning and critical insight. Keywords: cognitive process dimensions, abstract visual thinking, intellectual level, motivation to learn, academic achievement.


2020 ◽  
Author(s):  
Guillaume Jacquemin ◽  
Annabelle Wurmser ◽  
Mathilde Huyghe ◽  
Wenjie Sun ◽  
Meghan Perkins ◽  
...  

AbstractTumours are complex ecosystems composed of different types of cells that communicate and influence each other. While the critical role of stromal cells in affecting tumour growth is well established, the impact of mutant cancer cells on healthy surrounding tissues remains poorly defined. Here, we uncovered a paracrine mechanism by which intestinal cancer cells reactivate foetal and regenerative Yap-associated transcriptional programs in neighbouring wildtype epithelial cells, rendering them adapted to thrive in the tumour context. We identified the glycoprotein Thrombospondin-1 (Thbs1) as the essential factor that mediates non-cell autonomous morphological and transcriptional responses. Importantly, Thbs1 is associated with bad prognosis in several human cancers. This study reveals the Thbs1-YAP axis as the mechanistic link mediating paracrine interactions between epithelial cells, promoting tumour formation and progression.


2020 ◽  
Vol 24 (4) ◽  
pp. 1029-1036 ◽  
Author(s):  
Hai Pham ◽  
Truong-Van Luu ◽  
Soo-Yong Kim ◽  
Duc-Thinh Vien

Sign in / Sign up

Export Citation Format

Share Document