scholarly journals Determining Ultrasound Arrival Time by HHT and Kurtosis in Wind Speed Measurement

Electronics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 93
Author(s):  
Shiyuan Liu ◽  
Zhipeng Li ◽  
Tong Wu ◽  
Wei Zhang

The determination of ultrasonic echo signal onset time is the core of performing the time difference method to calculate wind speed. However, in practical cases, background noise makes precise determination extremely difficult. This paper carries out research on the accurate determination of onset time, exploring the advantages of an improved method based on the combination of Hilbert-Huang Transform (HHT) and high-order statistics (kurtosis). Performing Hilbert-Huang Transform to the received wave is aimed at determining a rough arrival time, around which a fixed size of data is extracted as initial sample to avoid a false pick. Then the fourth-order kurtosis of a smaller sample, extracted successively by a moving window from the initial sample, is calculated. The minimum point corresponds to the initial onset time. This approach was tested on a real ultrasonic echo signal dataset, acquired in a wind tunnel with an ultrasonic anemometer. The proposed method showed satisfying results in both ideal cases and low signal-to-noise ratio (SNR) environment, compared with traditional onset time determination approaches, including Akaike Information Criterion (AIC-picker), Short-term Average over Long-term Average (STA/LTA), and Teager-Kaiser energy operator (TKEO). The experimental results acquired by the HHT-kurtosis method demonstrated that the proposed method possesses a high accuracy.

Sensors ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 269 ◽  
Author(s):  
Wei Zhang ◽  
Zhipeng Li ◽  
Xuyang Gao ◽  
Yanjun Li ◽  
Yibing Shi

The time-difference method is a common one for measuring wind speed ultrasonically, and its core is the precise arrival-time determination of the ultrasonic echo signal. However, because of background noise and different types of ultrasonic sensors, it is difficult to measure the arrival time of the echo signal accurately in practice. In this paper, a method based on the wavelet transform (WT) and Bayesian information criteria (BIC) is proposed for determining the arrival time of the echo signal. First, the time-frequency distribution of the echo signal is obtained by using the determined WT and rough arrival time. After setting up a time window around the rough arrival time point, the BIC function is calculated in the time window, and the arrival time is determined by using the BIC function. The proposed method is tested in a wind tunnel with an ultrasonic anemometer. The experimental results show that, even in the low-signal-to-noise-ratio area, the deviation between mostly measured values and preset standard values is mostly within 5 μs, and the standard deviation of measured wind speed is within 0.2 m/s.


2019 ◽  
Vol 23 (3) ◽  
pp. 578-583
Author(s):  
YC He ◽  
JCK Cheung ◽  
QS Li ◽  
JY Fu

The reference wind speed and reference static pressure are two key parameters for determining the testing results of wind tunnel experiments. Traditionally, the values of these parameters can be determined using direct measurement methods. However, such methods may suffer from less accuracy and inconvenience of operations. This article documents an indirect measurement method which, compared to the traditional methods, has the merits of higher accuracy and greater operational convenience. Examples are presented to demonstrate the main procedures of the method and typical findings by using the method in a boundary layer wind tunnel.


1994 ◽  
Vol 37 (3) ◽  
Author(s):  
G. Kvaerna

We have investigated the potential automatic use of an onset picker based on autoregressive likelihood estimation. Both a single component version and a three component version of this method have been tested on data from events located in the Khibiny Massif of the Kola peninsula, recorded at the Apatity array, the Apatity three component station and the ARCESS array. Using this method, we have been able to estimate onset times to an accuracy (standard deviation) of about 0.05 s for P-phases and 0.15 0.20 s for S phases. These accuracies are as good as for analyst picks, and are considerably better than the accuracies of the current onset procedure used for processing of regional array data at NORSAR. In another application, we have developed a generic procedure to reestimate the onsets of all types of first arriving P phases. By again applying the autoregressive likelihood technique, we have obtained automatic onset times of a quality such that 70% of the automatic picks are within 0.1 s of the best manual pick. For the onset time procedure currently used at NORSAR, the corresponding number is 28%. Clearly, automatic reestimation of first arriving P onsets using the autoregressive likelihood technique has the potential of significantly reducing the retiming efforts of the analyst.


Author(s):  
R.D. Leapman ◽  
P. Rez ◽  
D.F. Mayers

Microanalysis by EELS has been developing rapidly and though the general form of the spectrum is now understood there is a need to put the technique on a more quantitative basis (1,2). Certain aspects important for microanalysis include: (i) accurate determination of the partial cross sections, σx(α,ΔE) for core excitation when scattering lies inside collection angle a and energy range ΔE above the edge, (ii) behavior of the background intensity due to excitation of less strongly bound electrons, necessary for extrapolation beneath the signal of interest, (iii) departures from the simple hydrogenic K-edge seen in L and M losses, effecting σx and complicating microanalysis. Such problems might be approached empirically but here we describe how computation can elucidate the spectrum shape.The inelastic cross section differential with respect to energy transfer E and momentum transfer q for electrons of energy E0 and velocity v can be written as


Author(s):  
M.A. Gribelyuk ◽  
M. Rühle

A new method is suggested for the accurate determination of the incident beam direction K, crystal thickness t and the coordinates of the basic reciprocal lattice vectors V1 and V2 (Fig. 1) of the ZOLZ plans in pixels of the digitized 2-D CBED pattern. For a given structure model and some estimated values Vest and Kest of some point O in the CBED pattern a set of line scans AkBk is chosen so that all the scans are located within CBED disks.The points on line scans AkBk are conjugate to those on A0B0 since they are shifted by the reciprocal vector gk with respect to each other. As many conjugate scans are considered as CBED disks fall into the energy filtered region of the experimental pattern. Electron intensities of the transmitted beam I0 and diffracted beams Igk for all points on conjugate scans are found as a function of crystal thickness t on the basis of the full dynamical calculation.


Author(s):  
F.A. Ponce ◽  
H. Hikashi

The determination of the atomic positions from HRTEM micrographs is only possible if the optical parameters are known to a certain accuracy, and reliable through-focus series are available to match the experimental images with calculated images of possible atomic models. The main limitation in interpreting images at the atomic level is the knowledge of the optical parameters such as beam alignment, astigmatism correction and defocus value. Under ordinary conditions, the uncertainty in these values is sufficiently large to prevent the accurate determination of the atomic positions. Therefore, in order to achieve the resolution power of the microscope (under 0.2nm) it is necessary to take extraordinary measures. The use of on line computers has been proposed [e.g.: 2-5] and used with certain amount of success.We have built a system that can perform operations in the range of one frame stored and analyzed per second. A schematic diagram of the system is shown in figure 1. A JEOL 4000EX microscope equipped with an external computer interface is directly linked to a SUN-3 computer. All electrical parameters in the microscope can be changed via this interface by the use of a set of commands. The image is received from a video camera. A commercial image processor improves the signal-to-noise ratio by recursively averaging with a time constant, usually set at 0.25 sec. The computer software is based on a multi-window system and is entirely mouse-driven. All operations can be performed by clicking the mouse on the appropiate windows and buttons. This capability leads to extreme friendliness, ease of operation, and high operator speeds. Image analysis can be done in various ways. Here, we have measured the image contrast and used it to optimize certain parameters. The system is designed to have instant access to: (a) x- and y- alignment coils, (b) x- and y- astigmatism correction coils, and (c) objective lens current. The algorithm is shown in figure 2. Figure 3 shows an example taken from a thin CdTe crystal. The image contrast is displayed for changing objective lens current (defocus value). The display is calibrated in angstroms. Images are stored on the disk and are accessible by clicking the data points in the graph. Some of the frame-store images are displayed in Fig. 4.


Sign in / Sign up

Export Citation Format

Share Document