scholarly journals High-Q Slot Resonator Used in Chipless Tag Design

Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1119
Author(s):  
Nengyu Huang ◽  
Jiaxiang Chen ◽  
Zhonghua Ma

A retransmission chipless tag with multiple U-shaped slot resonators is proposed to cut down the cost of traditional tags with chips. Multiple side-by-side U-shaped slot structures of different lengths are printed on the microstrip line, and the two terminals of the microstrip line are connected correspondingly with two orthogonal ultra-wideband (UWB) transceiver antennas to form the retransmission chipless tag. The U-shaped slot resonator has high Q values and narrow impedance bandwidth. The bandwidth that each resonator adds to the protection bandwidth is 300 MHz. Several 6-bit coding U-shaped slot resonator chipless tags are designed and fabricated for comparison and measurement. Results show that the simulation and the measurement are in agreement. The slot width of the U-shaped slot resonator and the distance between the resonators are reduced, resulting in deepened spectrum notch depth of the resonator. Decreasing the dielectric constant of the substrate or increasing the thickness of the substrate increases the spectrum notch depth of the resonator.

2016 ◽  
Vol 9 (3) ◽  
pp. 621-627 ◽  
Author(s):  
Idris Messaoudene ◽  
Tayeb A. Denidni ◽  
Abdelmadjid Benghalia

In this paper, a microstrip-fed U-shaped dielectric resonator antenna (DRA) is simulated, designed, and fabricated. This antenna, in its simple configuration, operates from 5.45 to 10.8 GHz. To enhance its impedance bandwidth, the ground plane is first modified, which leads to an extended bandwidth from 4 to 10.8 GHz. Then by inserting a rectangular metallic patch inside the U-shaped DRA, the bandwidth is increased more to achieve an operating band from 2.65 to 10.9 GHz. To validate these results, an experimental antenna prototype is fabricated and measured. The obtained measurement results show that the proposed antenna can provide an ultra-wide bandwidth and a symmetric bidirectional radiation patterns. With these features, the proposed antenna is suitable for ultra-wideband applications.


Frequenz ◽  
2017 ◽  
Vol 72 (1-2) ◽  
Author(s):  
Chen-yang Shuai ◽  
Guang-ming Wang

AbstractA simple ultra-wideband magneto-electric dipole antenna utilizing a differential-fed structure is designed. The antenna mainly comprises three parts, including a novel circular horned reflector, two vertical semicircular shorted patches as a magnetic dipole, and a horizontal U-shaped semicircular electric dipole. A differential feeding structure working as a perfect balun excites the designed antenna. The results of simulation have a good match with the ones of measurement. Results indicate that the designed antenna achieves a wide frequency bandwidth of 107 % which is 3.19~10.61 GHz, when VSWR is below 2. Via introducing the circular horned reflector, the designed antenna attains a steady and high gain of 12±1.5dBi. Moreover, settled broadside direction main beam, high front-to-back ratio, low cross polarization, and the symmetrical and relatively stable radiation patterns in the E-and H-plane are gotten in the impedance bandwidth range. In the practical applications, the proposed antenna that is dc grounded and has a simple structure satisfies the requirement of many outdoor antennas.


2019 ◽  
Vol 8 (2) ◽  
pp. 48-52 ◽  
Author(s):  
M. Yerlikaya ◽  
S. S. Gültekin ◽  
D. Uzer

In this study, a wideband low profile microstrip antenna design for C-band applications is presented. The proposed antenna consists of a monopol log periodic patch in the equilateral triangular dimensions with the microstrip line fed and a rectangular ground plane. The antenna has 9×19.8 mm2 overall size, thickness of 1.6 mm and 4.3 dielectric constant. According to the simulation results, the proposed antenna has a very wide bandwidth while operating in the frequency band of 4.25-7.95 GHz and 5 GHz resonance frequency. The proposed antenna was also prototyped on FR4 substrate with the 0.02 tangent loss and the measurement results were quite similar by the simulated results.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Liting Wang ◽  
Bin Huang

A MIMO antenna composed by microstrip line-fed circular slot antenna is proposed. This antenna is used in ultra-wideband microwave imaging systems aimed for early breast cancer detection. The antenna is designed to operate across the ultra-wideband frequency band in the air. The mutual coupling between the antenna elements has been investigated to be low enough for MIMO medical imaging applications. Both the simulation and measurement results are shown to illustrate the performances of the proposed antenna.


Author(s):  
B. Hammache ◽  
A. Messai ◽  
I. Messaoudene ◽  
T. A. Denidni

Abstract In this paper, a compact stepped slot antenna for ultra-wideband (UWB) applications is proposed. A very small size and UWB bandwidth operation are achieved by integrating a stepped slot in the back side of the antenna. This stepped slot is excited by using a 50 Ω-feed line in the top side of the antenna. The antenna is characterized by an impedance bandwidth between 3.05 GHz and more than 12 GHz. The dimensions of the antenna are 17 mm × 8 mm × 1.27 mm, which leads to the most compact size compared with other works in the literature. The integrated stepped slot is divided into additional elementary slots, where each elementary slot has a matching point. Adding these elementary slots allows to increase further the operating bandwidth. The radiation pattern of the compact stepped slot antenna is omnidirectional in the H-plane and bidirectional in the E-plane. The measurement results agree well with the simulated ones in terms of impedance matching and radiation pattern.


2020 ◽  
Vol 10 (6) ◽  
pp. 6557-6562
Author(s):  
S. Alotaibi ◽  
A. A. Alotaibi

In this work, a new ultra-wideband (UWB) antenna design with 2.08GHz to 12GHz impedance bandwidth and triple-band specifications is presented. The proposed antenna is formed by a truncated square patch, a partial ground plane, and a 50Ω microstrip line. Three different types of slots were used in order to induce notched bands. A C-shaped slot is etched on the radiating patch to obtain a notched band in 3.31-4.21GHz for WiMAX. An inverted U-shaped slot in the micro-strip line induces a second notched band in order to reduce the interference with the WLAN [5.04-6.81GHz]. Finally, two inverted L-shaped slots around the micro-ribbon line on the ground plane allow the X-band [9.13 to 10.75GHz]. The antenna has dimensions of 32×28×1.6mm3. The Ansoft software (HFSS) was used to simulate the proposed structure. The simulation results are in good agreement with the measurement results. The antenna shows an omnidirectional radiation pattern.


2017 ◽  
Vol 24 (3) ◽  
pp. 361-370
Author(s):  
Md. Moinul Islam ◽  
Rabah Wasel Aldhaheri ◽  
Muntasir Mohammad Sheikh ◽  
Mohammad Tariqul Islam ◽  
Md. Samsuzzaman ◽  
...  

AbstractA microstrip line-fed monopole antenna is proposed for super wideband (SWB) applications printed on an epoxy-resin-reinforced woven-glass material. The reported SWB antenna has been made of a rectangular partial ground plane with an L-type slit and a heart-shaped radiating patch. This antenna is connected precisely by a tapered feed line that provides SWB greater than ultra-wideband. The heart-shaped radiating patch and the partial ground plane containing a gap and an L-type slit on ground plane also play paramount roles to procure wide impedance bandwidth. It is determined from measurements that this antenna contains SWB characteristic [voltage standing wave ratio (VSWR) ≤2] spanning from 1.30 to 40 GHz (187.41%), with a bandwidth dimension ratio (BDR) of 5544.66 and a ratio bandwidth of 30.77:1. Simple construction, sharp surface current flow, much impedance bandwidth, nearly omnidirectional radiation patterns, stable peak gain (2.20–6.06 dBi), time domain performance, and considerable BDR (5544.66) make it a promising candidate for SWB applications.


Photonics ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 256
Author(s):  
Yue-Xin Yin ◽  
Xiao-Pei Zhang ◽  
Xiao-Jie Yin ◽  
Yue Li ◽  
Xin-Ru Xu ◽  
...  

A high-Q-factor tunable silica-based microring resonator (MRR) is demonstrated. To meet the critical-coupling condition, a Mach–Zehnder interferometer (MZI) as the tunable coupler was integrated with a racetrack resonator. Then, 40 mW electronic power was applied on the microheater on the arm of MZI, and a maximal notch depth of about 13.84 dB and a loaded Q factor of 4.47 × 106 were obtained. The proposed MRR shows great potential in practical application for optical communications and integrated optics.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 529 ◽  
Author(s):  
Ch Ramakrishna ◽  
G A.E.Satish Kumar ◽  
P Chandra Sekhar Reddy

This paper presents a band notched WLAN self complementaryultra wide band antenna for wireless applications. The proposed antenna encounters a return loss (RL) less than -10dB for entire ultra wideband frequency range except band notched frequency. This paper proposes a hexagon shape patch, edge feeding, self complementary technique and defective ground structure. The antenna has an overall dimensionof 28.3mm × 40mm × 2mm, builton  substrate FR4 with a relative dielectric permittivity 4.4. And framework is simulated finite element method with help of high frequency structured simulator HFSSv17.2.the proposed antenna achieves a impedance bandwidth of 8.6GHz,  band rejected WLAN frequency range 5.6-6.5 GHz with  vswr is less than 2.


Sign in / Sign up

Export Citation Format

Share Document