scholarly journals Three-Dimensional Indoor Visible Light Positioning with a Tilt Receiver and a High Efficient LED-ID

Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1265
Author(s):  
Haixin Xu ◽  
Futong An ◽  
Shangsheng Wen ◽  
Zihong Yan ◽  
Weipeng Guan

Nowadays, indoor visible light positioning (VLP) is one of the hottest technologies in the field of positioning; as a result, a number of algorithms for VLP have been proposed. However, unfortunately, few algorithms can be applied to the case that the receiver is tilted. In order to solve this problem, we developed a three-dimensional indoor VLP algorithm which can work effectively and accurately when the lens is tilted. When the lens is far away from the LED, the image of the LED is approximately regarded as an ellipse, and the distance between the two is obtained through the geometric relationship, and we finally achieve the positioning of the camera by the triangulation algorithm. The quantitative results show an average error of 6.74 cm when the tilt angle is estimated to be within 30°. At the same time, we propose an ID allocation scheme, which can effectively reduce the demand for ID.

2019 ◽  
Vol 9 (7) ◽  
pp. 1488 ◽  
Author(s):  
Ali Dehghan Firoozabadi ◽  
Cesar Azurdia-Meza ◽  
Ismael Soto ◽  
Fabian Seguel ◽  
Nicolas Krommenacker ◽  
...  

A new visible light communication (VLC) system is proposed for localization in underground mining. Existent systems, such as global positioning system (GPS) and systems based on mobile communication, are generally not useful in underground mining. The proposed system is based on a three-dimensional trilateration VLC localization scheme. This articles offers an evaluation of the proposed system in different evaluation scenarios in terms of the average localization error. The proposed algorithm localizes the source with an average localization estimation error of less than (16.4 cm), based on the source location. The average error is (3.5 cm) for subjects that are very close to the light-emitting-diode (LEDs).The obtained results show the superiority of the proposed method in comparison with traditional short range radio frequency technologies such as RFID, Wi-Fi and Zigbee, making it a feasible system for localizing objects in underground mining.


Author(s):  
J. Frank ◽  
B. F. McEwen ◽  
M. Radermacher ◽  
C. L. Rieder

The tomographic reconstruction from multiple projections of cellular components, within a thick section, offers a way of visualizing and quantifying their three-dimensional (3D) structure. However, asymmetric objects require as many views from the widest tilt range as possible; otherwise the reconstruction may be uninterpretable. Even if not for geometric obstructions, the increasing pathway of electrons, as the tilt angle is increased, poses the ultimate upper limitation to the projection range. With the maximum tilt angle being fixed, the only way to improve the faithfulness of the reconstruction is by changing the mode of the tilting from single-axis to conical; a point within the object projected with a tilt angle of 60° and a full 360° azimuthal range is then reconstructed as a slightly elliptic (axis ratio 1.2 : 1) sphere.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaoyu Zhao ◽  
Ye Zhao ◽  
Ming-De Li ◽  
Zhong’an Li ◽  
Haiyan Peng ◽  
...  

AbstractPhotopolymerization-based three-dimensional (3D) printing can enable customized manufacturing that is difficult to achieve through other traditional means. Nevertheless, it remains challenging to achieve efficient 3D printing due to the compromise between print speed and resolution. Herein, we report an efficient 3D printing approach based on the photooxidation of ketocoumarin that functions as the photosensitizer during photopolymerization, which can simultaneously deliver high print speed (5.1 cm h−1) and high print resolution (23 μm) on a common 3D printer. Mechanistically, the initiating radical and deethylated ketocoumarin are both generated upon visible light exposure, with the former giving rise to rapid photopolymerization and high print speed while the latter ensuring high print resolution by confining the light penetration. By comparison, the printed feature is hard to identify when the ketocoumarin encounters photoreduction due to the increased lateral photopolymerization. The proposed approach here provides a viable solution towards efficient additive manufacturing by controlling the photoreaction of photosensitizers during photopolymerization.


RSC Advances ◽  
2021 ◽  
Vol 11 (33) ◽  
pp. 20446-20456
Author(s):  
Xi Ma ◽  
Ziwei Wang ◽  
Haoguo Yang ◽  
Yiqiu Zhang ◽  
Zizhong Zhang ◽  
...  

Compared with traditional layered graphene, graphene hydrogels have been used to construct highly efficient visible light-excited photocatalysts due to their particular three-dimensional network structure and efficient electron transport capacity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Niksa Mohammadi Bagheri ◽  
Mahmoud Kadkhodaei ◽  
Shiva Pirhadi ◽  
Peiman Mosaddegh

AbstractThe implementation of intracorneal ring segments (ICRS) is one of the successfully applied refractive operations for the treatment of keratoconus (kc) progression. The different selection of ICRS types along with the surgical implementation techniques can significantly affect surgical outcomes. Thus, this study aimed to investigate the influence of ICRS implementation techniques and design on the postoperative biomechanical state and keratometry results. The clinical data of three patients with different stages and patterns of keratoconus were assessed to develop a three-dimensional (3D) patient-specific finite-element model (FEM) of the keratoconic cornea. For each patient, the exact surgery procedure definitions were interpreted in the step-by-step FEM. Then, seven surgical scenarios, including different ICRS designs (complete and incomplete segment), with two surgical implementation methods (tunnel incision and lamellar pocket cut), were simulated. The pre- and postoperative predicted results of FEM were validated with the corresponding clinical data. For the pre- and postoperative results, the average error of 0.4% and 3.7% for the mean keratometry value ($$\text {K}_{\text{mean}}$$ K mean ) were predicted. Furthermore, the difference in induced flattening effects was negligible for three ICRS types (KeraRing segment with arc-length of 355, 320, and two separate 160) of equal thickness. In contrast, the single and double progressive thickness of KeraRing 160 caused a significantly lower flattening effect compared to the same type with constant thickness. The observations indicated that the greater the segment thickness and arc-length, the lower the induced mean keratometry values. While the application of the tunnel incision method resulted in a lower $$\text {K}_{\text{mean}}$$ K mean value for moderate and advanced KC, the induced maximum Von Mises stress on the postoperative cornea exceeded the induced maximum stress on the cornea more than two to five times compared to the pocket incision and the preoperative state of the cornea. In particular, an asymmetric regional Von Mises stress on the corneal surface was generated with a progressive ICRS thickness. These findings could be an early biomechanical sign for a later corneal instability and ICRS migration. The developed methodology provided a platform to personalize ICRS refractive surgery with regard to the patient’s keratoconus stage in order to facilitate the efficiency and biomechanical stability of the surgery.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2354
Author(s):  
Jimmy Jiun-Ming Su ◽  
Chih-Hsin Lin ◽  
Hsuan Chen ◽  
Shyh-Yuan Lee ◽  
Yuan-Min Lin

Gelatin methacryloyl (GelMA) hydrogel is a photopolymerizable biomaterial widely used for three-dimensional (3D) cell culture due to its high biocompatibility. However, the drawback of GelMA hydrogel is its poor mechanical properties, which may compromise the feasibility of biofabrication techniques. In this study, a cell-laden GelMA composite hydrogel with a combination incorporating silanized hydroxyapatite (Si-HAp) and a simple and harmless visible light crosslinking system for this hydrogel were developed. The incorporation of Si-HAp into the GelMA hydrogel enhanced the mechanical properties of the composite hydrogel. Moreover, the composite hydrogel exhibited low cytotoxicity and promoted the osteogenic gene expression of embedded MG63 cells and Human bone marrow mesenchymal stem cells (hBMSCs). We also established a maskless lithographic method to fabricate a defined 3D structure under visible light by using a digital light processing projector, and the incorporation of Si-HAp increased the resolution of photolithographic hydrogels. The GelMA-Si-HAp composite hydrogel system can serve as an effective biomaterial in bone regeneration.


2014 ◽  
Vol 556-562 ◽  
pp. 5017-5020
Author(s):  
Ting Ting Wang

Three-dimensional stereo vision technology has the capability of overcoming drawbacks influencing by light, posture and occluder. A novel image processing method is proposed based on three-dimensional stereoscopic vision, which optimizes model on the basis of camera binocular vision and in improvement of adding constraints to traditional model, moreover ensures accuracy of later location and recognition. To verify validity of the proposed method, firstly marking experiments are conducted to achieve fruit location, with the result of average error rate of 0.65%; and then centroid feature experiments are achieved with error from 5.77mm to 68.15mm and reference error rate from 1.44% to 5.68%, average error rate of 3.76% while the distance changes from 300mm to 1200mm. All these data of experiments demonstrate that proposed method meets the requirements of three-dimensional imageprocessing.


Sign in / Sign up

Export Citation Format

Share Document