scholarly journals Improving the Sensitivity of Chipless RFID Sensors: The Case of a Low-Humidity Sensor

Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2861
Author(s):  
Giada Marchi ◽  
Viviana Mulloni ◽  
Omar Hammad Ali ◽  
Leandro Lorenzelli ◽  
Massimo Donelli

This study is supposed to introduce a valid strategy for increasing the sensitivity of chipless radio frequency identification (RFID) encoders. The idea is to properly select the dielectric substrate in order to enhance the contribution of the sensitive layer and to maximize the frequency shift of the resonance peak. The specific case of a chipless sensor suitable for the detection of humidity in low-humidity regimes will be investigated both with numerical and experimental tests.

2015 ◽  
Vol 2 (2) ◽  
pp. 86-96 ◽  
Author(s):  
M. Zomorrodi ◽  
N.C. Karmakar

The electromagnetic (EM) imaging technique at mm-band 60 GHz is proposed for data encoding purpose in the chipless Radio Frequency Identification (RFID) systems. The fully printable chipless RFID tag comprises tiny conductive EM polarizers to create high cross-polar radar cross-section. Synthetic aperture radar approach is applied for formation of the tag's EM-image and revealing the tag's content. The achieved high data encoding capacity of 2 bits/cm2in this technique based on a fully printable tag is very convincing for many applications. The system immunity to multipath interference, bending effect, and printing inaccuracy suggests huge potentials for low-cost item tagging. Tags are also readable through a tick paper envelop; hence secure identification is provided by the proposed technique.


Author(s):  
Shahid Habib ◽  
Amjad Ali ◽  
Ghaffer Iqbal Kiani ◽  
Wagma Ayub ◽  
Syed Muzahir Abbas ◽  
...  

Abstract This paper presents a polarization-independent 11-bit chipless RFID tag based on frequency-selective surface which has been designed for encoding and relative humidity (RH) sensing applications. The 10 exterior U-shaped resonators are used for item encoding whereas Kapton has been incorporated with the interior resonator for RH sensing. This radio-frequency identification (RFID) tag operates in S- and C-frequency bands. The proposed design offers enhanced fractional bandwidth up to 88% with the density of 4.46 bits/cm2. Both single- and dual-layer tags have been investigated. The simulated results are in good agreement with measured results and a comparison with existing literature is presented to show the performance. Simple geometry, high code density, large frequency signature bandwidth, high magnitude bit, high radar cross-section, and angular stability for more than 75° are the unique outcomes of the proposed design. In addition, RH sensing has been achieved by integrating the Kapton on the same RFID tag.


IoT (Internet of Things) made headway from Machine to Machine communication without human intrusion for number of machines to connect with the aid of network. There is esteem; by 2020 there will be 26 times more connected things than people. Hence, the concern of security rises along with the high installments. The BlockChain Technology takes place of all central entities, which is peer to peer communication with the distributed network. In this paper, two Arduino boards as nodes and a Raspberry Pi as server are to be configured to connect to the Wi-Fi using ESP8266(node mc). To make data transmission from the two nodes to server, integration of temperature and humidity sensor in one node and RFID (Radio Frequency Identification) reader in other node is to be done. Data should be in the form of blocks and integration of data is in the form of a chain, forming it a Blockchain. All the blocks are linked in the chain manner of which the current hash of the previous block must match with the previous hash of the next block. Then only the blocks of data are secured. While receiving data every time from nodes to server, the previous hash is to be checked such that the arrival of the information is being verified to know if it’s really genuine. If the cryptographic hash does not match then data manipulation is happened. So, in this paper, we will see, along with how practically the security is highly offered by the blockchain technology and how can we easily identify if the data has been tampered along the way it reaches to us. Henceforth, we will found a way of application to secure our IoT data without any regrets in this paper.


2013 ◽  
Vol 10 (1) ◽  
pp. 30-39 ◽  
Author(s):  
Kirsi Saarinen ◽  
Laura Frisk

Radio frequency identification tags (RFID) with anisotropic conductive adhesive (ACA) joints are used in various applications where the environmental conditions may impair their reliability. Thus the effects of different environmental stresses on reliability need to be investigated. The purpose of this work was to study whether a relatively simple shear stress model can be utilized in reliability prediction of anisotropically conductive paste (ACP) joints in an accelerated humidity test on the basis of the information obtained from another humidity test. If modeling gives accurate results when studying reliability, the need for actual testing would decrease and thereby time and cost savings could be achieved. In this study, finite element models were made to calculate shear stresses in ACP joints induced by two different humidity tests. Additionally, experimental tests were performed and the results were compared with those of modeling. The test samples were RFID tags whose microchips were attached with ACP. A constant humidity test was used to study the effects of high humidity level and a humidity cycling test was used to examine the effects of constantly varying humidity. In the modeling it was observed that the selection of the stress-free temperature has a significant effect on the results. With three different stress-free temperatures, three different sets of results were obtained. Although the tags saturated in the extreme conditions of the humidity cycling test, according to modeling, the change in relative humidity level in the humidity cycling test did not increase the harshness of the test. However, the temperature change in the humidity cycling test increased the harshness.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4740
Author(s):  
Sergio Terranova ◽  
Filippo Costa ◽  
Giuliano Manara ◽  
Simone Genovesi

A new class of Radio Frequency IDentification (RFID) tags, namely the three-dimensional (3D)-printed chipless RFID one, is proposed, and their performance is assessed. These tags can be realized by low-cost materials, inexpensive manufacturing processes and can be mounted on metallic surfaces. The tag consists of a solid dielectric cylinder, which externally appears as homogeneous. However, the information is hidden in the inner structure of the object, where voids are created to encrypt information in the object. The proposed chipless tag represents a promising solution for anti-counterfeiting or security applications, since it avoids an unwanted eavesdropping during the reading process or information retrieval from a visual inspection that may affect other chipless systems. The adopted data-encoding algorithm does not rely on On–Off or amplitude schemes that are commonly adopted in the chipless RFID implementations but it is based on the maximization of available states or the maximization of non-overlapping regions of uncertainty. The performance of such class of chipless RFID tags are finally assessed by measurements on real prototypes.


Micromachines ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1019
Author(s):  
Kevin Mc Gee ◽  
Prince Anandarajah ◽  
David Collins

To date, no printable chipless Radio Frequency Identification (RFID) sensor-related publications in the current literature discuss the possibility of thermocouple integration, particularly for the use in extreme environments. Furthermore, the effects of a time-dependent stimulus on the scattering parameters of a chipless RFID have never been discussed in the known literature. This work includes a review of possible methods to achieve this goal and the design and characterization of a Barium Strontium Titanate (BST) based VHF/UHF voltage sensing circuit. Proof-of-concept thermocouple integration was attempted, and subsequent testing was performed using a signal generator. These subsequent tests involved applying ramp and sinusoid voltage waveforms to the circuit and the characteristics of these signals are largely extracted from the scattering response. Overall conclusions of this paper are that thermocouple integration into chipless RFID technology is still a significant challenge and further work is needed to identify methods of thermocouple integration. With that being said, the developed circuit shows promise as being capable of being configured into a conventional chipless RFID DC voltage sensor.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1843 ◽  
Author(s):  
Jahangir Alam ◽  
Maher Khaliel ◽  
Abdelfattah Fawky ◽  
Ahmed El-Awamry ◽  
Thomas Kaiser

This paper focuses on the frequency coded chipless Radio Frequency Identification (RFID) wherein the tag’s information bits are physically encoded by the resonators’ notch position which has an effect on the frequency spectrum of the backscattered or retransmitted signal of the tag. In this regard, the notch analytical model is developed to consider the notch position and quality factor. Besides, the radar cross section (RCS) mathematical representation of the tag is introduced to consider the incident wave’s polarization and orientation angles. Hence, the influences of the incident wave’s orientation and polarization mismatches on the detection performance are quantified. After that, the tag measurement errors and limitations are comprehensively explained. Therefore, approaches to measureing RCS- and retransmission-based tags are introduced. Furthermore, the maximum reading range is theoretically calculated and practically verified considering the Federal Communications Commission (FCC) Ultra Wideband (UWB) regulations. In all simulations and experiments conducted, a mono-static configuration is considered, in which one antenna is utilized for transmission and reception.


Electronics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 581 ◽  
Author(s):  
Wazie M. Abdulkawi ◽  
Abdel-Fattah A. Sheta

A novel quad-state coupled-line microstrip resonator is proposed for compact chipless radio frequency identification (RFID) tags. The proposed resonator can be reconfigured to present one of four possible states: 00, 01, 10, and 11, representing, no resonance, resonance at f2, resonance at f1, and resonance at both f1 and f2, respectively. The frequency span between f2 and f1 can be easily controlled, thereby reducing the required spectrum. Moreover, the proposed technique allows the storage of a large amount of data in a compact size to reduce the cost per bit. A multi-resonator prototype consisting of six resonators is designed, analyzed, and experimentally characterized. This prototype is implemented on the RT Duroid 5880 substrate with a dielectric constant of 2.2, loss tangent of 0.0009, and thickness of 0.79 mm. The designed configuration can be reconfigured for 46 codes. Two complete the RFID tags, including the six resonators and two orthogonally polarized transmitting and receiving antennas, are implemented and tested. The first tag code is designed for all ones, 111111111111, and the second tag is designed as 101010101010 code. Experimental results show good agreement with the simulation.


Author(s):  
Kawther Mekki ◽  
Omrane Necibi ◽  
Hugo Dinis ◽  
Paulo Mendes ◽  
Ali Gharsallah

Abstract In order to encrypt/encode data based on the magnitude level of the radar cross-section (RCS), we propose an approach with a precise estimation considering the resonant characteristics of a multipatch backscatter-based chipless radio frequency identification (RFID) dedicated for chipless tags depolarization. The working principle is based on the polarization mismatch between the tag and the reader antenna to control the magnitude of the backscatter, which allows a reliable detection in real environments. We introduce in this paper a new 4-bit chipless RFID tag with an enhanced RCS, based on a triangular patch antenna with multiple resonators. Additionally, we propose an ultra-wideband impulse radar (UWB-IR)-based reader that interrogates the chipless tag with a UWB pulse, and the received backscatter was studied in both time- and frequency-domains. The antenna was operating from 4.7 to 6.1 GHz, a band allocated for RFID systems. The obtained experimental measurement results in the environment of anechoic chamber were exceptionally relevant to validate the simulation results.


Sign in / Sign up

Export Citation Format

Share Document