scholarly journals Compact 3-bit Frequency Reconfigurable Monopole Antenna Realized with a Switchable Three-Line Section

Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2933
Author(s):  
Yueyou Yang ◽  
Yun Liu

This work proposes a compact 3-bit frequency-reconfigurable monopole antenna covering a broad reconfigurable range by inserting a switchable three-line section (STLS). The design starts with a conventional quarter-wavelength monopole line antenna, which is then replaced by a novel structure, the STLS. The STLS is composed of three parallel-connected lines with different lengths. Accordingly, three RF p–i–n diodes are introduced in the STLS to achieve binary reconfiguration. After all parameters of the antenna have been optimized, it will eventually output 2N = 8 (N is the number of switches) independent working states with different equivalent lengths and a reconfigurable working frequency. The number of states in a binary reconfigurable antenna is optimally large in relation to the number of switches used, which means that it can be extremely convenient for digital control of switching all the states and capable of decreasing the number of RF p–i–n diodes we used, thereby minimizing the manufacturing cost and loss of diodes. A prototype antenna is fabricated and tested, and the measurement results agree well with the simulation results, validating the good features, such as a large reconfigurable switchable frequency range from 0.95 GHz to 2.45 GHz with considerable working bandwidth varying from 40 MHz to 540 MHz for each state, simple structure, and a compact size of 70 × 40 mm2, which can be appropriately used for a multi-radio wireless system and handheld devices. All the states have a similar monopole radiation pattern with a good maximum efficiency and an acceptable peak gain according to its compact size.

2021 ◽  
Vol 9 (1) ◽  
pp. 103-108
Author(s):  
Salah I. Yahya ◽  
Abbas Rezaei

A dual-band bandpass-bandpass microstrip diplexer with very small size and good performance is designed in this work. The proposed diplexer has a novel structure which is introduced for the first time in this paper. In comparison with the previously reported diplexers, it occupies the most compact size of 0.002 λg2 (226.7 mm2), fabricated on 0.787 mm dielectric substrate height. The resonance frequencies of the presented diplexer are located at 0.76 GHz and 1.79 GHz making it suitable for the global system for mobile communications (GSM) applications. It has a wide flat channels with two fractional bandwidths (FBWs) of 41.1% and 50%. Another feature of the proposed diplexer is its ability to suppress the harmonics. It can attenuate the 1st to 7th harmonics. Moreover, it has low insertion losses and low group delays at both channels while the isolation and return losses are acceptable. Finally, the proposed diplexer is fabricated and measured to verify the simulation results, where a good agreement between the simulation and measurement results is obtained.


Author(s):  
Asmaa Zugari ◽  
Wael Abd Ellatif Ali ◽  
Mohammad Ahmad Salamin ◽  
El Mokhtar Hamham

In this paper, a compact reconfigurable tri-band/quad-band monopole antenna is presented. To achieve the multi-band behavior, two right-angled triangles were etched in a conventional rectangular patch, and a partial ground plane is used. Moreover, the proposed multi-band antenna is printed on a low cost FR4 epoxy with compact dimensions of 0.23[Formula: see text], where [Formula: see text] is calculated at the lowest resonance frequency. To provide frequency agility, a metal strip which acts as PIN diode was embedded in the frame of the modified patch. The tri-band/quad-band antenna performance in terms of reflection coefficient, radiation patterns, peak gain and efficiency was studied. The measured results are consistent with the simulated results for both cases. The simple structure and the compact size of the proposed antenna could make it a good candidate for multi-band wireless applications.


Author(s):  
YunYan Zhou ◽  
NianShun Zhao ◽  
RenXia Ning ◽  
Jie Bao

Abstract A compact coplanar waveguide-fed monopole antenna is presented in this paper. The proposed antenna is composed of three monopole branches. In order to achieve the miniaturization, the longest branch was bent. The antenna is printed on an FR4 dielectric substrate, having a compact size of 0.144λ0 × 0.105λ0 × 0.003λ0 at its lowest resonant frequency of 900 MHz. The multiband antenna covers five frequency bands: 820–990 MHz, 1.87–2.08 GHz, 2.37–2.93 GHz, 3.98–4.27 GHz, and 5.47–8.9 GHz, which covers the entire radio frequency identification bands (860–960 MHz, 2.4–2.48 GHz, and 5.725–5.875 GHz), Global System for Mobile Communications (GSM) bands (890–960 MHz and 1.850–1.990 GHz), WLAN bands (2.4–2.484 GHz and 5.725–5.825 GHz), WiMAX band (2.5–2.69 GHz), X-band satellite communication systems (7.25–7.75 GHz and 7.9–8.4 GHz), and sub 6 GHz in 5G mobile communication system (3.3–4.2 GHz and 4.4–5.0 GHz). Also, the antenna has good radiation characteristics in the operating band, which is nearly omnidirectional. Both the simulated and experimental results are presented and compared and a good agreement is established. The proposed antenna operates in five frequency bands with high gain and good radiation characteristics, which make it a suitable candidate in terminal devices with multiple communication standards.


Author(s):  
Xicong Zou ◽  
Xuesen Zhao ◽  
Guo Li ◽  
Zengqiang Li ◽  
Zhenjiang Hu ◽  
...  

On-machine error compensation (OMEC) is efficient at improving machining accuracy without increasing extra manufacturing cost, and involves the on-machine measurement (OMM) of machining accuracy and modification of program code based on the measurement results. As an excellent OMM technique, chromatic confocal sensing allows for the rapid development of accurate and reliable error compensation technique. The present study integrated a non-contact chromatic confocal probe into an ultra-precision machine for OMM and OMEC of machined components. First, the configuration and effectiveness of the OMM system were briefly described, and the relevant OMEC method was presented. With the OMM result, error compensation software was then developed to automatically generate a modified program code for error compensation. Finally, a series of cutting experiments were performed to verify the validity of the proposed OMEC method. The experimental results demonstrate that the proposed error compensation method is reliable and considerably improves the form error of machined components.


Author(s):  
A H Majeed ◽  
K H Sayidmarie

<p class="Default">In this paper, a new approach to the design of an UWB monopole antenna with dual band-notched characteristics is presented.   The antenna has the form of an elliptical monopole over a ground plane having an elliptical slot to achieve the UWB. The dual-band notch function is created by inserting a U-shaped and a C-shaped slots on the radiating patch, thus no extra size is needed. The proposed antenna shows a good omnidirectional radiation pattern across the band from 3.2 to more than 14 GHz. The dual band-rejection is for 4.88-5.79GHz centered at 5.4GHz and 7.21-8.46 GHz centered at 7.8 GHz. The antenna prototype using the FR-4 substrate with ε<sub>r</sub>=4.3 has a compact size of 25mm×25 mm ×1.45mm. The fabricated prototype showed experimental results comparable to those obtained from the simulations.</p>


Frequenz ◽  
2018 ◽  
Vol 72 (9-10) ◽  
pp. 455-458 ◽  
Author(s):  
Vivek Singh ◽  
Vinay Kumar Killamsetty ◽  
Biswajeet Mukherjee

Abstract In this letter, a miniaturized Band Pass Filter (BPF) with wide stopband centered at 0.350 GHz for TETRA band applications is proposed using a Spiral Short Circuit quarter wavelength Stepped Impedance Resonator (SSC-SIR) and a stub loaded on feed line for enhancement of rejection level in the stopband. Spiral configuration of the resonator is used for the miniaturization of BPF. The proposed BPF provides a 3dB fractional bandwidth of 13.7 % with two transmission zeros in the lower and upper stopband to provide good selectivity and four transmission zeros which provide wide stopband upto 6.86f0. Proposed BPF has a very compact size of 0.064λg×0.062λg.


Frequenz ◽  
2019 ◽  
Vol 73 (9-10) ◽  
pp. 301-306
Author(s):  
Xuehan Hu ◽  
Feng Wei ◽  
Jiawen Hao ◽  
Xiaowei Shi

AbstractIn this paper, a tunable power divider (PD) with a good band-pass filtering response using quarter-wavelength stepped impedance resonators (SIRs) is presented. By appropriately adjusting the impedance and electrical length ratio of SIR, the proposed structure can achieve wide stopband performance. Meanwhile, four varactor diodes are loaded to the external resonators to achieve electrical reconfiguration. In addition, a pair of transmission zeros (TZs) can be generated by applying source and load coupling on each side of the passband, which can effectively improve passband selectivity and out-of-band rejection. In order to verify the feasibility of the proposed design method, a prototype circuit of the proposed filtering power divider (FPD) with tunable center frequency is simulated, fabricated and measured. A good agreement between the simulation and measurement results is observed.


Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 547
Author(s):  
Slawomir Gruszczynski ◽  
Robert Smolarz ◽  
Krzysztof Wincza

In this paper, a bi-level microstrip differential directional coupler has been investigated. It has been shown that the equalization of coupling coefficients can be successfully made with the use of appropriate dielectric stack-up and conductor geometry. The application of additional top dielectric layer can ensure proper equalization of coupling coefficients by lowering the value of capacitive coupling coefficient to the value of the inductive one. The theoretically investigated coupled-line section has been used for the design of a 3-dB differential directional coupler. The measurement results are compared with the theoretical ones.


2017 ◽  
Vol 7 (1.1) ◽  
pp. 461 ◽  
Author(s):  
Pronami Bora ◽  
Mona Mudaliar ◽  
Yuvraj Baburao Dhanade ◽  
K Sreelakshm ◽  
Chayan Paul ◽  
...  

A metamaterial extended microstrip rectangular patch antenna with CSRR loading and defected ground structures(DGS) is proposed for wideband applications with band notching at the frequencies of KU band. The proposed antenna is designed by embedding it on Rogers RT/Duroid 5880 substrate with good impedance matching of 50 Ω at the feedline.The high frequency structure simulator (HFSS) is used to design and simulate the antennas parameters in the operating band. Measurement results confirm the antenna characteristics as predicted in the simulation with a slight shift in frequencies.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Danvir Mandal ◽  
S. S. Pattnaik

A novel wide coplanar waveguide- (CPW-) fed multiband wearable monopole antenna is presented. The multiband operation is achieved by generating slanted monopoles of different lengths from an isosceles triangular patch. The different operating frequencies of the proposed antenna are associated with the lengths of the slanted monopoles, which are determined under quarter wavelength resonance condition. The CPW line is used as a multiband impedance-matching structure. The two grounds are slightly extended for better impedance matching. The proposed antenna is designed to cover the 1800 MHz GSM, 2.4 GHz/5.2 GHz WLAN, and 3.5 GHz WiMAX bands. The measured peak gains and impedance bandwidths are about 4.18/3.83/2.6/2.94 dBi and 410/260/170/520 MHz for the 1550-1960 MHz/2.3-2.56 GHz/3.4-3.57 GHz/5.0-5.52 GHz bands, respectively. The calculated averaged specific absorption rate (SAR) values at all the resonant frequencies are well below the standard limit of 2 W/kg, which ensures its feasibility for wearable applications. The antenna performance under different bending configurations is investigated and the results are presented. The reflection coefficient characteristics of the proposed antenna is also measured for different on-arm conditions and the results are compared. A good agreement between experimental and simulation results validates the proposed design approach.


Sign in / Sign up

Export Citation Format

Share Document