scholarly journals An Optimized Fuzzy Logic Control Model Based on a Strategy for the Learning of Membership Functions in an Indoor Environment

Electronics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 132 ◽  
Author(s):  
Muhammad Fayaz ◽  
Israr Ullah ◽  
DoHyeun Kim

The Mamdani fuzzy inference method is one of the most important fuzzy logic control (FLC) techniques and has several applications in different fields. Despite its applications, the Mamdani fuzzy inference method has some core issues which still require solutions. The most critical issue is the selection of accurate shape and boundaries of membership functions (MFs) in the universe of discourse. In this work, we introduced a methodology called learning to control (LtC) to resolve the problem. The proposed methodology consisted of two main modules, namely, a control algorithm (CA) module and a learning algorithm (LA) module. In the CA module, the Mamdani FLC method has been used, whereas, in the LA module, we have used the artificial neural network (ANN) algorithm. Inputs into the ANN were the error difference between environmental temperature and the required temperature. The output of the ANN was the MF set to the FLC. Inputs into the fuzzy logic controller (FLC) were the error difference between environmental temperature and required temperature (D), and the output was the required power for the fan actuator. The purpose of the ANN was to tune the MFs of the FLC to improve its efficiency. The proposed learning-to-control method along with the conventional fuzzy logic controller method was applied to the data to evaluate the model’s performance. The results indicate that the proposed model’s performance is far better than that of conventional fuzzy logic techniques.

Author(s):  
Md Rafiqul Islam Sheikh ◽  
Rion Takahashi ◽  
Junji Tamura

At present fuzzy logic control is receiving increasing emphasis in process control applications. The paper describes the application of fuzzy logic control in a power system that uses a 12- pulse bridge converter associated with Superconductive Magnetic Energy Storage (SMES) unit. The fuzzy control is used in both the frequency and voltage control loops, replacing the conventional control method. The control algorithms have been developed in detail and simulation results are presented. These results clearly indicate the superior performance of fuzzy control during the dynamic period of energy transfer between the power system and SMES unit. Keywords: Fuzzy logic controller; power system dynamic performance; SMES unit. DOI: http://dx.doi.org/10.3329/diujst.v6i2.9343 DIUJST 2011; 6(2): 33-41


2014 ◽  
Vol 889-890 ◽  
pp. 920-924
Author(s):  
Chun Yang Zhang ◽  
Jin Nan Zhang ◽  
Cai Qin Sun

As to the ripple problem of the direct torque control system of permanent magnet synchronous motor, this paper present a new method based on the fuzzy logic control. The new method replaces the traditional hysteresis torque controller by a fuzzy logic controller to realize the low ripple effect of the torque and the flux linkage. Also this paper modeling and simulate the new control system using the FIS toolbox provided by the Matlab/Simulink software, and the simulation results shows that the fuzzy control method is far more better than the traditional direct torque control system.


1990 ◽  
Vol 55 (4) ◽  
pp. 951-963 ◽  
Author(s):  
Josef Vrba ◽  
Ywetta Purová

A linguistic identification of a system controlled by a fuzzy-logic controller is presented. The information about the behaviour of the system, concentrated in time-series, is analyzed from the point of its description by linguistic variable and fuzzy subset as its quantifier. The partial input/output relation and its strength is expressed by a sort of correlation tables and coefficients. The principles of automatic generation of model statements are presented as well.


1989 ◽  
Vol 111 (2) ◽  
pp. 128-137 ◽  
Author(s):  
S. Daley ◽  
K. F. Gill

A study is described that compares the performance of a self-organizing fuzzy logic control law (SOC) with that of the more traditional P + D algorithm. The multivariate problem used for the investigation is the attitude control of a flexible satellite that has significant dynamic coupling of the axes. It is demonstrated that the SOC can provide good control, requires limited process knowledge and compares favorably with the P + D algorithm.


Author(s):  
Desi Fatkhi Azizah ◽  
Khen Dedes ◽  
Agung Bella Putra Utama ◽  
Aripriharta

Jurnal Teknik ◽  
2020 ◽  
Vol 9 (2) ◽  
Author(s):  
Sumardi Sadi

DC motors are included in the category of motor types that are most widely used both in industrial environments, household appliances to children's toys. The development of control technology has also made many advances from conventional control to automatic control to intelligent control. Fuzzy logic is used as a control system, because this control process is relatively easy and flexible to design without involving complex mathematical models of the system to be controlled. The purpose of this research is to study and apply the fuzzy mamdani logic method to the Arduino uno microcontroller, to control the speed of a DC motor and to control the speed of the fan. The research method used is an experimental method. Global testing is divided into three, namely sensor testing, Pulse Width Modulation (PWM) testing and Mamdani fuzzy logic control testing. The fuzzy controller output is a control command given to the DC motor. In this DC motor control system using the Mamdani method and the control system is designed using two inputs in the form of Error and Delta Error. The two inputs will be processed by the fuzzy logic controller (FLC) to get the output value in the form of a PWM signal to control the DC motor. The results of this study indicate that the fuzzy logic control system with the Arduino uno microcontroller can control the rotational speed of the DC motor as desired.


2019 ◽  
Vol 59 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Erol Can

A 9-level inverter with a boost converter has been controlled with a fuzzy logic controller and a PID controller for regulating output voltage applications on resistive (R) and inductive (L), capacitance (C). The mathematical model of this system is created according to the fuzzy logic controlling new high multilevel inverter with a boost converter. The DC-DC boost converter and the multi-level inverter are designed and explained, when creating a mathematical model after a linear pulse width modulation (LPWM), it is preferred to operate the boost multi-level inverter. The fuzzy logic control and the PID control are used to manage the LPWM that allows the switches to operate. The fuzzy logic algorithm is presented by giving necessary mathematical equations that have second-degree differential equations for the fuzzy logic controller. After that, the fuzzy logic controller is set up in the 9-level inverter. The proposed model runs on different membership positions of the triangles at the fuzzy logic controller after testing the PID controller. After the output voltage of the converter, the output voltage of the inverter and the output current of the inverter are observed at the MATLAB SIMULINK, the obtained results are analysed and compared. The results show the demanded performance of the inverter and approve the contribution of the fuzzy logic control on multi-level inverter circuits.


Author(s):  
V. Ram Mohan Parimi ◽  
Piyush Jain ◽  
Devendra P. Garg

This paper deals with the Fuzzy Logic control of a Magnetic Levitation system [1] available in the Robotics and Control Laboratory at Duke University. The laboratory Magnetic Levitation system primarily consists of a metallic ball, an electromagnet and an infrared optical sensor. The objective of the control experiment is to balance the metallic ball in a magnetic field at a desired position against gravity. The dynamics and control complexity of the system makes it an ideal control laboratory experiment. The student can design their own control schemes and/or change the parameters on the existing control modes supplied with the Magnetic Levitation system, and evaluate and compare their performances. In the process, they overcome challenges such as designing various control techniques, choose which specific control strategy to use, and learn how to optimize it. A Fuzzy Logic control scheme was designed and implemented to control the Magnetic Levitation system. Position and rate of change of position were the inputs to Fuzzy Logic Controller. Experiments were performed on the existing Magnetic Levitation system. Results from these experiments and digital simulation are presented in the paper.


Sign in / Sign up

Export Citation Format

Share Document