scholarly journals WSMS: Wearable Stress Monitoring System based on IoT Multi-Sensor Platform for Living Sheep Transportation

Electronics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 441 ◽  
Author(s):  
Cui ◽  
Zhang ◽  
Li ◽  
Luo ◽  
Zhang ◽  
...  

Farming herdsmen, sheep dealers, and veterinarians are increasingly interested in continuously monitoring sheep basic physiological characteristics (such as the heart rate and skin temperature) outside the laboratory environment, with the aim of identifying the physiological links between stress, uncomfortable, excitement, and other pathological states. This paper proposes a non-invasive Wearable Stress Monitoring System (WSMS) with PhotoPlethysmoGram (PPG), Infrared Temperature Measurement (ITM), and Inertial Measurement Units (IMU) that aimed to remotely and continuously monitor the stress signs of sheep during transportation. The purpose of this study was implemented by following the multi-dimensional sensing platform to identify more pressure information. The designed WSMS showed sufficient robustness in recording and transmitting sensing data of physiology and environment during transport. The non-contact and non-destructive monitoring method that was proposed in this paper was helpful in minimizing the effects of sheep stress load.

Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Yunjeong Yang ◽  
Ji Eun Kim ◽  
Hak Jin Song ◽  
Eun Bin Lee ◽  
Yong-Keun Choi ◽  
...  

Abstract Background Water content variation during plant growth is one of the most important monitoring parameters in plant studies. Conventional parameters (such as dry weight) are unreliable; thus, the development of rapid, accurate methods that will allow the monitoring of water content variation in live plants is necessary. In this study, we aimed to develop a non-invasive, radiofrequency-based monitoring system to rapidly and accurately detect water content variation in live plants. The changes in standing wave ratio (SWR) caused by the presence of stem water and magnetic particles in the stem water flow were used as the basis of plant monitoring systems. Results The SWR of a coil probe was used to develop a non-invasive monitoring system to detect water content variation in live plants. When water was added to the live experimental plants with or without illumination under drought conditions, noticeable SWR changes at various frequencies were observed. When a fixed frequency (1.611 GHz) was applied to a single experimental plant (Radermachera sinica), a more comprehensive monitoring, such as water content variation within the plant and the effect of illumination on water content, was achieved. Conclusions Our study demonstrated that the SWR of a coil probe could be used as a real-time, non-invasive, non-destructive parameter for detecting water content variation and practical vital activity in live plants. Our non-invasive monitoring method based on SWR may also be applied to various plant studies.


Author(s):  
Elisa Digo ◽  
Giuseppina Pierro ◽  
Stefano Pastorelli ◽  
Laura Gastaldi

The increasing number of postural disorders emphasizes the central role of the vertebral spine during gait. Indeed, clinicians need an accurate and non-invasive method to evaluate the effectiveness of a rehabilitation program on spinal kinematics. Accordingly, the aim of this work was the use of inertial sensors for the assessment of angles among vertebral segments during gait. The spine was partitioned into five segments and correspondingly five inertial measurement units were positioned. Articulations between two adjacent spine segments were modeled with spherical joints, and the tilt–twist method was adopted to evaluate flexion–extension, lateral bending and axial rotation. In total, 18 young healthy subjects (9 males and 9 females) walked barefoot in three different conditions. The spinal posture during gait was efficiently evaluated considering the patterns of planar angles of each spine segment. Some statistically significant differences highlighted the influence of gender, speed and imposed cadence. The proposed methodology proved the usability of inertial sensors for the assessment of spinal posture and it is expected to efficiently point out trunk compensatory pattern during gait in a clinical context.


2015 ◽  
Vol 811 ◽  
pp. 353-358
Author(s):  
Gheorghe Daniel Voinea ◽  
Gheorghe Mogan

Monitoring human motion with magnetic and inertial measurement units is a complex task and there are many factors that must be taken into consideration. In this work, a wearable system for monitoring scoliosis using three inertial measurement units (IMUs) is introduced. The proposed solution can be used indoor and is focused on using the roll angle for measuring lateral movement of the spine, which characterizes the scoliosis spinal disorder.


Electronics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 173 ◽  
Author(s):  
Nicolas Valencia-Jimenez ◽  
Arnaldo Leal-Junior ◽  
Leticia Avellar ◽  
Laura Vargas-Valencia ◽  
Pablo Caicedo-Rodríguez ◽  
...  

This paper presents a comparison between a multiple red green blue-depth (RGB-D) vision system, an intensity variation-based polymer optical fiber (POF) sensor, and inertial measurement units (IMUs) for human joint angle estimation and movement analysis. This systematic comparison aims to study the trade-off between the non-invasive feature of a vision system and its accuracy with wearable technologies for joint angle measurements. The multiple RGB-D vision system is composed of two camera-based sensors, in which a sensor fusion algorithm is employed to mitigate occlusion and out-range issues commonly reported in such systems. Two wearable sensors were employed for the comparison of angle estimation: (i) a POF curvature sensor to measure 1-DOF angle; and (ii) a commercially available IMUs MTw Awinda from Xsens. A protocol to evaluate elbow joints of 11 healthy volunteers was implemented and the comparison of the three systems was presented using the correlation coefficient and the root mean squared error (RMSE). Moreover, a novel approach for angle correction of markerless camera-based systems is proposed here to minimize the errors on the sagittal plane. Results show a correlation coefficient up to 0.99 between the sensors with a RMSE of 4.90 ∘ , which represents a two-fold reduction when compared with the uncompensated results (10.42 ∘ ). Thus, the RGB-D system with the proposed technique is an attractive non-invasive and low-cost option for joint angle assessment. The authors envisage the proposed vision system as a valuable tool for the development of game-based interactive environments and for assistance of healthcare professionals on the generation of functional parameters during motion analysis in physical training and therapy.


2014 ◽  
Author(s):  
Rozaimi Ghazali ◽  
◽  
Asiah Mohd Pilus ◽  
Wan Mohd Bukhari Wan Daud ◽  
Mohd Juzaila Abd Latif ◽  
...  

2021 ◽  
Vol 11 (3) ◽  
pp. 1341
Author(s):  
María Higuera ◽  
José M. Perales ◽  
María-Luisa Rapún ◽  
José M. Vega

A review of available results on non-destructive testing of physical systems, using the concept of topological sensitivity, is presented. This mathematical tool estimates the sensitivity of a set of measurements in some given sensors, distributed along the system, to defects/flaws that produce a degradation of the system. Such degradation manifests itself on the properties of the system. The good performance of this general purpose post-processing method is reviewed and illustrated in some applications involving non-destructive testing. These applications include structural health monitoring, considering both elastodynamic ultrasonic guided Lamb waves and active infrared thermography. Related methods can also be used in other fields, such as diagnosis/prognosis of engineering devices, which is also considered.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2200
Author(s):  
Ruben X. G. Silva ◽  
Paulo Cartaxana ◽  
Ricardo Calado

Berghia stephanieae is a stenophagous sea slug that preys upon glass anemones, such as Exaiptasia diaphana. Glass anemones host photosynthetic dinoflagellate endosymbionts that sea slugs ingest when consuming E. diaphana. However, the prevalence of these photosynthetic dinoflagellate endosymbionts in sea slugs appears to be short-lived, particularly if B.stephanieae is deprived of prey that host these microalgae (e.g., during bleaching events impacting glass anemones). In the present study, we investigated this scenario, along with food deprivation, and validated the use of a non-invasive and non-destructive approach employing chlorophyll fluorescence as a proxy to monitor the persistence of the association between sea slugs and endosymbiotic photosynthetic dinoflagellates acquired through the consumption of glass anemones. Berghia stephanieae deprived of a trophic source hosting photosynthetic dinoflagellate endosymbionts (e.g., through food deprivation or by feeding on bleached E. diaphana) showed a rapid decrease in minimum fluorescence (Fo) and photosynthetic efficiency (Fv/Fm) when compared to sea slugs fed with symbiotic anemones. A complete loss of endosymbionts was observed within 8 days, confirming that no true symbiotic association was established. The present work opens a new window of opportunity to rapidly monitor in vivo and over time the prevalence of associations between sea slugs and photosynthetic dinoflagellate endosymbionts, particularly during bleaching events that prevent sea slugs from incorporating new microalgae through trophic interactions.


Sign in / Sign up

Export Citation Format

Share Document