scholarly journals One Shot Crowd Counting with Deep Scale Adaptive Neural Network

Electronics ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 701 ◽  
Author(s):  
Junfeng Wu ◽  
Zhiyang Li ◽  
Wenyu Qu ◽  
Yizhi Zhou

This paper aims to utilize the deep learning architecture to break through the limitations of camera perspective, image background, uneven crowd density distribution and pedestrian occlusion to estimate crowd density accurately. In this paper, we proposed a new neural network called Deep Scale-Adaptive Convolutional Neural Network (DSA-CNN), which can convert a single crowd image to density map for crowd counting directly. For a crowd image with any size and resolution, our algorithm can output the density map of the crowd image by end-to-end method and finally estimate the number of the crowd in the image. The proposed DSA-CNN consists of two parts: the seven layers CNN network structure and DSA modules. In order to ensure the proposed method is robust to camera perspective effect, DSA-CNN has adopted different sizes of filters in the network and combines them ingeniously. In order to reduce the depth of the data to increase the speed of training, the proposed method utilized 1 × 1 filter in DSA module. To validate the effectiveness of the proposed model, we conducted comparative experiments on four popular public datasets (ShanghiTech dataset, UCF_CC_50 dataset, WorldExpo’10 dataset and UCSD dataset). We compare the proposed method with other well-known algorithms on the MAE and MSE indicators, such as MCNN, Switching-CNN, CSRNet, CP-CNN and Cascaded-MTL. Experimental results show that the proposed method has excellent performance. In addition, we found that the proposed model is easily trained, which further increases the usability of the proposed model.

Author(s):  
Lingbo Liu ◽  
Hongjun Wang ◽  
Guanbin Li ◽  
Wanli Ouyang ◽  
Liang Lin

Crowd counting from unconstrained scene images is a crucial task in many real-world applications like urban surveillance and management, but it is greatly challenged by the camera’s perspective that causes huge appearance variations in people’s scales and rotations. Conventional methods address such challenges by resorting to fixed multi-scale architectures that are often unable to cover the largely varied scales while ignoring the rotation variations. In this paper, we propose a unified neural network framework, named Deep Recurrent Spatial-Aware Network, which adaptively addresses the two issues in a learnable spatial transform module with a region-wise refinement process. Specifically, our framework incorporates a Recurrent Spatial-Aware Refinement (RSAR) module iteratively conducting two components: i) a Spatial Transformer Network that dynamically locates an attentional region from the crowd density map and transforms it to the suitable scale and rotation for optimal crowd estimation; ii) a Local Refinement Network that refines the density map of the attended region with residual learning. Extensive experiments on four challenging benchmarks show the effectiveness of our approach. Specifically, comparing with the existing best-performing methods, we achieve an improvement of 12\% on the largest dataset WorldExpo’10 and 22.8\% on the most challenging dataset UCF\_CC\_50


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 703
Author(s):  
Jun Zhang ◽  
Jiaze Liu ◽  
Zhizhong Wang

Owing to the increased use of urban rail transit, the flow of passengers on metro platforms tends to increase sharply during peak periods. Monitoring passenger flow in such areas is important for security-related reasons. In this paper, in order to solve the problem of metro platform passenger flow detection, we propose a CNN (convolutional neural network)-based network called the MP (metro platform)-CNN to accurately count people on metro platforms. The proposed method is composed of three major components: a group of convolutional neural networks is used on the front end to extract image features, a multiscale feature extraction module is used to enhance multiscale features, and transposed convolution is used for upsampling to generate a high-quality density map. Currently, existing crowd-counting datasets do not adequately cover all of the challenging situations considered in this study. Therefore, we collected images from surveillance videos of a metro platform to form a dataset containing 627 images, with 9243 annotated heads. The results of the extensive experiments showed that our method performed well on the self-built dataset and the estimation error was minimum. Moreover, the proposed method could compete with other methods on four standard crowd-counting datasets.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Siqi Tang ◽  
Zhisong Pan ◽  
Xingyu Zhou

This paper proposes an accurate crowd counting method based on convolutional neural network and low-rank and sparse structure. To this end, we firstly propose an effective deep-fusion convolutional neural network to promote the density map regression accuracy. Furthermore, we figure out that most of the existing CNN based crowd counting methods obtain overall counting by direct integral of estimated density map, which limits the accuracy of counting. Instead of direct integral, we adopt a regression method based on low-rank and sparse penalty to promote accuracy of the projection from density map to global counting. Experiments demonstrate the importance of such regression process on promoting the crowd counting performance. The proposed low-rank and sparse based deep-fusion convolutional neural network (LFCNN) outperforms existing crowd counting methods and achieves the state-of-the-art performance.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Pengfei Li ◽  
Min Zhang ◽  
Jian Wan ◽  
Ming Jiang

The most advanced method for crowd counting uses a fully convolutional network that extracts image features and then generates a crowd density map. However, this process often encounters multiscale and contextual loss problems. To address these problems, we propose a multiscale aggregation network (MANet) that includes a feature extraction encoder (FEE) and a density map decoder (DMD). The FEE uses a cascaded scale pyramid network to extract multiscale features and obtains contextual features through dense connections. The DMD uses deconvolution and fusion operations to generate features containing detailed information. These features can be further converted into high-quality density maps to accurately calculate the number of people in a crowd. An empirical comparison using four mainstream datasets (ShanghaiTech, WorldExpo’10, UCF_CC_50, and SmartCity) shows that the proposed method is more effective in terms of the mean absolute error and mean squared error. The source code is available at https://github.com/lpfworld/MANet.


2018 ◽  
Vol 8 (12) ◽  
pp. 2367 ◽  
Author(s):  
Hongling Luo ◽  
Jun Sang ◽  
Weiqun Wu ◽  
Hong Xiang ◽  
Zhili Xiang ◽  
...  

In recent years, the trampling events due to overcrowding have occurred frequently, which leads to the demand for crowd counting under a high-density environment. At present, there are few studies on monitoring crowds in a large-scale crowded environment, while there exists technology drawbacks and a lack of mature systems. Aiming to solve the crowd counting problem with high-density under complex environments, a feature fusion-based deep convolutional neural network method FF-CNN (Feature Fusion of Convolutional Neural Network) was proposed in this paper. The proposed FF-CNN mapped the crowd image to its crowd density map, and then obtained the head count by integration. The geometry adaptive kernels were adopted to generate high-quality density maps which were used as ground truths for network training. The deconvolution technique was used to achieve the fusion of high-level and low-level features to get richer features, and two loss functions, i.e., density map loss and absolute count loss, were used for joint optimization. In order to increase the sample diversity, the original images were cropped with a random cropping method for each iteration. The experimental results of FF-CNN on the ShanghaiTech public dataset showed that the fusion of low-level and high-level features can extract richer features to improve the precision of density map estimation, and further improve the accuracy of crowd counting.


2020 ◽  
Vol 34 (04) ◽  
pp. 4132-4139
Author(s):  
Huiting Hong ◽  
Hantao Guo ◽  
Yucheng Lin ◽  
Xiaoqing Yang ◽  
Zang Li ◽  
...  

In this paper, we focus on graph representation learning of heterogeneous information network (HIN), in which various types of vertices are connected by various types of relations. Most of the existing methods conducted on HIN revise homogeneous graph embedding models via meta-paths to learn low-dimensional vector space of HIN. In this paper, we propose a novel Heterogeneous Graph Structural Attention Neural Network (HetSANN) to directly encode structural information of HIN without meta-path and achieve more informative representations. With this method, domain experts will not be needed to design meta-path schemes and the heterogeneous information can be processed automatically by our proposed model. Specifically, we implicitly represent heterogeneous information using the following two methods: 1) we model the transformation between heterogeneous vertices through a projection in low-dimensional entity spaces; 2) afterwards, we apply the graph neural network to aggregate multi-relational information of projected neighborhood by means of attention mechanism. We also present three extensions of HetSANN, i.e., voices-sharing product attention for the pairwise relationships in HIN, cycle-consistency loss to retain the transformation between heterogeneous entity spaces, and multi-task learning with full use of information. The experiments conducted on three public datasets demonstrate that our proposed models achieve significant and consistent improvements compared to state-of-the-art solutions.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Jin Zhang ◽  
Sheng Chen ◽  
Sen Tian ◽  
Wenan Gong ◽  
Guoshan Cai ◽  
...  

In the past ten years, crowd detection and counting have been applied in many fields such as station crowd statistics, urban safety prevention, and people flow statistics. However, obtaining accurate positions and improving the performance of crowd counting in dense scenes still face challenges, and it is worthwhile devoting much effort to this. In this paper, a new framework is proposed to resolve the problem. The proposed framework includes two parts. The first part is a fully convolutional neural network (CNN) consisting of backend and upsampling. In the first part, backend uses the residual network (ResNet) to encode the features of the input picture, and upsampling uses the deconvolution layer to decode the feature information. The first part processes the input image, and the processed image is input to the second part. The second part is a peak confidence map (PCM), which is proposed based on an improvement over the density map (DM). Compared with DM, PCM can not only solve the problem of crowd counting but also accurately predict the location of the person. The experimental results on several datasets (Beijing-BRT, Mall, Shanghai Tech, and UCF_CC_50 datasets) show that the proposed framework can achieve higher crowd counting performance in dense scenarios and can accurately predict the location of crowds.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jingfan Tang ◽  
Meijia Zhou ◽  
Pengfei Li ◽  
Min Zhang ◽  
Ming Jiang

The current crowd counting tasks rely on a fully convolutional network to generate a density map that can achieve good performance. However, due to the crowd occlusion and perspective distortion in the image, the directly generated density map usually neglects the scale information and spatial contact information. To solve it, we proposed MDPDNet (Multiresolution Density maps and Parallel Dilated convolutions’ Network) to reduce the influence of occlusion and distortion on crowd estimation. This network is composed of two modules: (1) the parallel dilated convolution module (PDM) that combines three dilated convolutions in parallel to obtain the deep features on the larger receptive field with fewer parameters while reducing the loss of multiscale information; (2) the multiresolution density map module (MDM) that contains three-branch networks for extracting spatial contact information on three different low-resolution density maps as the feature input of the final crowd density map. Experiments show that MDPDNet achieved excellent results on three mainstream datasets (ShanghaiTech, UCF_CC_50, and UCF-QNRF).


Author(s):  
Bin Ren ◽  
Yao Wang ◽  
Jiayu Chen

Abstract Unpredictable disturbances and chattering are the major challenges of the robot manipulator control. In recent years, trajectory-tracking-based controllers have been recognized by many researchers as the most promising method to understand robot dynamics with uncertainties and improve robot control. However, reliable trajectory-tracking-based controllers require high model precision and complexity. To develop an agile and straightforward method to mitigate the impact caused by uncertain disturbance and chattering, this study proposed an adaptive neural network sliding mode controller based on the super-twisting algorithm. The proposed model not only can minimize the tracking error but also improve the system robustness with a simpler structure. Moreover, the proposed controller has the following two distinctive features: (1) the weights of the radial basis function (RBF network) are designed to be adjusted in real-time and (2) the prior knowledge of the actual robot system is not required. The analytical model of the proposed controller was proved to be stable and ensured by the Lyapunov theory. To validate the proposed model, this study also conducted a comparative simulation on a two-link robot manipulator system with the conventional sliding mode controller and the model-based controller. The results suggest the proposed model improved the control accuracy and had fewer chattering.


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1346 ◽  
Author(s):  
Minglei Tong ◽  
Lyuyuan Fan ◽  
Hao Nan ◽  
Yan Zhao

Estimating the number of people in highly clustered crowd scenes is an extremely challenging task on account of serious occlusion and non-uniformity distribution in one crowd image. Traditional works on crowd counting take advantage of different CNN like networks to regress crowd density map, and further predict the count. In contrast, we investigate a simple but valid deep learning model that concentrates on accurately predicting the density map and simultaneously training a density level classifier to relax parameters of the network to prevent dangerous stampede with a smart camera. First, a combination of atrous and fractional stride convolutional neural network (CAFN) is proposed to deliver larger receptive fields and reduce the loss of details during down-sampling by using dilated kernels. Second, the expanded architecture is offered to not only precisely regress the density map, but also classify the density level of the crowd in the meantime (MTCAFN, multiple tasks CAFN for both regression and classification). Third, experimental results demonstrated on four datasets (Shanghai Tech A (MAE = 88.1) and B (MAE = 18.8), WorldExpo’10(average MAE = 8.2), NS UCF_CC_50(MAE = 303.2) prove our proposed method can deliver effective performance.


Sign in / Sign up

Export Citation Format

Share Document