scholarly journals Multi-Scale Inception Based Super-Resolution Using Deep Learning Approach

Electronics ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 892 ◽  
Author(s):  
Wazir Muhammad ◽  
Supavadee Aramvith

Single image super-resolution (SISR) aims to reconstruct a high-resolution (HR) image from a low-resolution (LR) image. In order to address the SISR problem, recently, deep convolutional neural networks (CNNs) have achieved remarkable progress in terms of accuracy and efficiency. In this paper, an innovative technique, namely a multi-scale inception-based super-resolution (SR) using deep learning approach, or MSISRD, was proposed for fast and accurate reconstruction of SISR. The proposed network employs the deconvolution layer to upsample the LR image to the desired HR image. The proposed method is in contrast to existing approaches that use the interpolation techniques to upscale the LR image. Primarily, interpolation techniques are not designed for this purpose, which results in the creation of undesired noise in the model. Moreover, the existing methods mainly focus on the shallow network or stacking multiple layers in the model with the aim of creating a deeper network architecture. The technique based on the aforementioned design creates the vanishing gradients problem during the training and increases the computational cost of the model. Our proposed method does not use any hand-designed pre-processing steps, such as the bicubic interpolation technique. Furthermore, an asymmetric convolution block is employed to reduce the number of parameters, in addition to the inception block adopted from GoogLeNet, to reconstruct the multiscale information. Experimental results demonstrate that the proposed model exhibits an enhanced performance compared to twelve state-of-the-art methods in terms of the average peak signal-to-noise ratio (PSNR), structural similarity index (SSIM) with a reduced number of parameters for the scale factor of 2 × , 4 × , and 8 × .

2021 ◽  
Vol 11 (3) ◽  
pp. 1089
Author(s):  
Suhong Yoo ◽  
Jisang Lee ◽  
Junsu Bae ◽  
Hyoseon Jang ◽  
Hong-Gyoo Sohn

Aerial images are an outstanding option for observing terrain with their high-resolution (HR) capability. The high operational cost of aerial images makes it difficult to acquire periodic observation of the region of interest. Satellite imagery is an alternative for the problem, but low-resolution is an obstacle. In this study, we proposed a context-based approach to simulate the 10 m resolution of Sentinel-2 imagery to produce 2.5 and 5.0 m prediction images using the aerial orthoimage acquired over the same period. The proposed model was compared with an enhanced deep super-resolution network (EDSR), which has excellent performance among the existing super-resolution (SR) deep learning algorithms, using the peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and root-mean-squared error (RMSE). Our context-based ResU-Net outperformed the EDSR in all three metrics. The inclusion of the 60 m resolution of Sentinel-2 imagery performs better through fine-tuning. When 60 m images were included, RMSE decreased, and PSNR and SSIM increased. The result also validated that the denser the neural network, the higher the quality. Moreover, the accuracy is much higher when both denser feature dimensions and the 60 m images were used.


2021 ◽  
Vol 38 (5) ◽  
pp. 1361-1368
Author(s):  
Fatih M. Senalp ◽  
Murat Ceylan

The thermal camera systems can be used in all kinds of applications that require the detection of heat change, but thermal imaging systems are highly costly systems. In recent years, developments in the field of deep learning have increased the success by obtaining quality results compared to traditional methods. In this paper, thermal images of neonates (healthy - unhealthy) obtained from a high-resolution thermal camera were used and these images were evaluated as high resolution (ground truth) images. Later, these thermal images were downscaled at 1/2, 1/4, 1/8 ratios, and three different datasets consisting of low-resolution images in different sizes were obtained. In this way, super-resolution applications have been carried out on the deep network model developed based on generative adversarial networks (GAN) by using three different datasets. The successful performance of the results was evaluated with PSNR (peak signal to noise ratio) and SSIM (structural similarity index measure). In addition, healthy - unhealthy classification application was carried out by means of a classifier network developed based on convolutional neural networks (CNN) to evaluate the super-resolution images obtained using different datasets. The obtained results show the importance of combining medical thermal imaging with super-resolution methods.


2020 ◽  
Vol 25 (2) ◽  
pp. 86-97
Author(s):  
Sandy Suryo Prayogo ◽  
Tubagus Maulana Kusuma

DVB merupakan standar transmisi televisi digital yang paling banyak digunakan saat ini. Unsur terpenting dari suatu proses transmisi adalah kualitas gambar dari video yang diterima setelah melalui proses transimisi tersebut. Banyak faktor yang dapat mempengaruhi kualitas dari suatu gambar, salah satunya adalah struktur frame dari video. Pada tulisan ini dilakukan pengujian sensitifitas video MPEG-4 berdasarkan struktur frame pada transmisi DVB-T. Pengujian dilakukan menggunakan simulasi matlab dan simulink. Digunakan juga ffmpeg untuk menyediakan format dan pengaturan video akan disimulasikan. Variabel yang diubah dari video adalah bitrate dan juga group-of-pictures (GOP), sedangkan variabel yang diubah dari transmisi DVB-T adalah signal-to-noise-ratio (SNR) pada kanal AWGN di antara pengirim (Tx) dan penerima (Rx). Hasil yang diperoleh dari percobaan berupa kualitas rata-rata gambar pada video yang diukur menggunakan metode pengukuran structural-similarity-index (SSIM). Dilakukan juga pengukuran terhadap jumlah bit-error-rate BER pada bitstream DVB-T. Percobaan yang dilakukan dapat menunjukkan seberapa besar sensitifitas bitrate dan GOP dari video pada transmisi DVB-T dengan kesimpulan semakin besar bitrate maka akan semakin buruk nilai kualitas gambarnya, dan semakin kecil nilai GOP maka akan semakin baik nilai kualitasnya. Penilitian diharapkan dapat dikembangkan menggunakan deep learning untuk memperoleh frame struktur yang tepat di kondisi-kondisi tertentu dalam proses transmisi televisi digital.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1269
Author(s):  
Jiabin Luo ◽  
Wentai Lei ◽  
Feifei Hou ◽  
Chenghao Wang ◽  
Qiang Ren ◽  
...  

Ground-penetrating radar (GPR), as a non-invasive instrument, has been widely used in civil engineering. In GPR B-scan images, there may exist random noise due to the influence of the environment and equipment hardware, which complicates the interpretability of the useful information. Many methods have been proposed to eliminate or suppress the random noise. However, the existing methods have an unsatisfactory denoising effect when the image is severely contaminated by random noise. This paper proposes a multi-scale convolutional autoencoder (MCAE) to denoise GPR data. At the same time, to solve the problem of training dataset insufficiency, we designed the data augmentation strategy, Wasserstein generative adversarial network (WGAN), to increase the training dataset of MCAE. Experimental results conducted on both simulated, generated, and field datasets demonstrated that the proposed scheme has promising performance for image denoising. In terms of three indexes: the peak signal-to-noise ratio (PSNR), the time cost, and the structural similarity index (SSIM), the proposed scheme can achieve better performance of random noise suppression compared with the state-of-the-art competing methods (e.g., CAE, BM3D, WNNM).


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 319
Author(s):  
Yi Wang ◽  
Xiao Song ◽  
Guanghong Gong ◽  
Ni Li

Due to the rapid development of deep learning and artificial intelligence techniques, denoising via neural networks has drawn great attention due to their flexibility and excellent performances. However, for most convolutional network denoising methods, the convolution kernel is only one layer deep, and features of distinct scales are neglected. Moreover, in the convolution operation, all channels are treated equally; the relationships of channels are not considered. In this paper, we propose a multi-scale feature extraction-based normalized attention neural network (MFENANN) for image denoising. In MFENANN, we define a multi-scale feature extraction block to extract and combine features at distinct scales of the noisy image. In addition, we propose a normalized attention network (NAN) to learn the relationships between channels, which smooths the optimization landscape and speeds up the convergence process for training an attention model. Moreover, we introduce the NAN to convolutional network denoising, in which each channel gets gain; channels can play different roles in the subsequent convolution. To testify the effectiveness of the proposed MFENANN, we used both grayscale and color image sets whose noise levels ranged from 0 to 75 to do the experiments. The experimental results show that compared with some state-of-the-art denoising methods, the restored images of MFENANN have larger peak signal-to-noise ratios (PSNR) and structural similarity index measure (SSIM) values and get better overall appearance.


2020 ◽  
Vol 10 (12) ◽  
pp. 4282
Author(s):  
Ghada Zamzmi ◽  
Sivaramakrishnan Rajaraman ◽  
Sameer Antani

Medical images are acquired at different resolutions based on clinical goals or available technology. In general, however, high-resolution images with fine structural details are preferred for visual task analysis. Recognizing this significance, several deep learning networks have been proposed to enhance medical images for reliable automated interpretation. These deep networks are often computationally complex and require a massive number of parameters, which restrict them to highly capable computing platforms with large memory banks. In this paper, we propose an efficient deep learning approach, called Hydra, which simultaneously reduces computational complexity and improves performance. The Hydra consists of a trunk and several computing heads. The trunk is a super-resolution model that learns the mapping from low-resolution to high-resolution images. It has a simple architecture that is trained using multiple scales at once to minimize a proposed learning-loss function. We also propose to append multiple task-specific heads to the trained Hydra trunk for simultaneous learning of multiple visual tasks in medical images. The Hydra is evaluated on publicly available chest X-ray image collections to perform image enhancement, lung segmentation, and abnormality classification. Our experimental results support our claims and demonstrate that the proposed approach can improve the performance of super-resolution and visual task analysis in medical images at a remarkably reduced computational cost.


Data ◽  
2018 ◽  
Vol 3 (3) ◽  
pp. 28 ◽  
Author(s):  
Kasthurirangan Gopalakrishnan

Deep learning, more specifically deep convolutional neural networks, is fast becoming a popular choice for computer vision-based automated pavement distress detection. While pavement image analysis has been extensively researched over the past three decades or so, recent ground-breaking achievements of deep learning algorithms in the areas of machine translation, speech recognition, and computer vision has sparked interest in the application of deep learning to automated detection of distresses in pavement images. This paper provides a narrative review of recently published studies in this field, highlighting the current achievements and challenges. A comparison of the deep learning software frameworks, network architecture, hyper-parameters employed by each study, and crack detection performance is provided, which is expected to provide a good foundation for driving further research on this important topic in the context of smart pavement or asset management systems. The review concludes with potential avenues for future research; especially in the application of deep learning to not only detect, but also characterize the type, extent, and severity of distresses from 2D and 3D pavement images.


Author(s):  
Yogita Hande ◽  
Akkalashmi Muddana

Presently, the advances of the internet towards a wide-spread growth and the static nature of traditional networks has limited capacity to cope with organizational business needs. The new network architecture software defined networking (SDN) appeared to address these challenges and provides distinctive features. However, these programmable and centralized approaches of SDN face new security challenges which demand innovative security mechanisms like intrusion detection systems (IDS's). The IDS of SDN are designed currently with a machine learning approach; however, a deep learning approach is also being explored to achieve better efficiency and accuracy. In this article, an overview of the SDN with its security concern and IDS as a security solution is explained. A survey of existing security solutions designed to secure the SDN, and a comparative study of various IDS approaches based on a deep learning model and machine learning methods are discussed in the article. Finally, we describe future directions for SDN security.


2017 ◽  
pp. 711-723
Author(s):  
Vikrant Bhateja ◽  
Abhinav Krishn ◽  
Himanshi Patel ◽  
Akanksha Sahu

Medical image fusion facilitates the retrieval of complementary information from medical images and has been employed diversely for computer-aided diagnosis of life threatening diseases. Fusion has been performed using various approaches such as Pyramidal, Multi-resolution, multi-scale etc. Each and every approach of fusion depicts only a particular feature (i.e. the information content or the structural properties of an image). Therefore, this paper presents a comparative analysis and evaluation of multi-modal medical image fusion methodologies employing wavelet as a multi-resolution approach and ridgelet as a multi-scale approach. The current work tends to highlight upon the utility of these approaches according to the requirement of features in the fused image. Principal Component Analysis (PCA) based fusion algorithm has been employed in both ridgelet and wavelet domains for purpose of minimisation of redundancies. Simulations have been performed for different sets of MR and CT-scan images taken from ‘The Whole Brain Atlas'. The performance evaluation has been carried out using different parameters of image quality evaluation like: Entropy (E), Fusion Factor (FF), Structural Similarity Index (SSIM) and Edge Strength (QFAB). The outcome of this analysis highlights the trade-off between the retrieval of information content and the morphological details in finally fused image in wavelet and ridgelet domains.


Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3724
Author(s):  
Quan Zhou ◽  
Mingyue Ding ◽  
Xuming Zhang

Image deblurring has been a challenging ill-posed problem in computer vision. Gaussian blur is a common model for image and signal degradation. The deep learning-based deblurring methods have attracted much attention due to their advantages over the traditional methods relying on hand-designed features. However, the existing deep learning-based deblurring techniques still cannot perform well in restoring the fine details and reconstructing the sharp edges. To address this issue, we have designed an effective end-to-end deep learning-based non-blind image deblurring algorithm. In the proposed method, a multi-stream bottom-top-bottom attention network (MBANet) with the encoder-to-decoder structure is designed to integrate low-level cues and high-level semantic information, which can facilitate extracting image features more effectively and improve the computational efficiency of the network. Moreover, the MBANet adopts a coarse-to-fine multi-scale strategy to process the input images to improve image deblurring performance. Furthermore, the global information-based fusion and reconstruction network is proposed to fuse multi-scale output maps to improve the global spatial information and recurrently refine the output deblurred image. The experiments were done on the public GoPro dataset and the realistic and dynamic scenes (REDS) dataset to evaluate the effectiveness and robustness of the proposed method. The experimental results show that the proposed method generally outperforms some traditional deburring methods and deep learning-based state-of-the-art deblurring methods such as scale-recurrent network (SRN) and denoising prior driven deep neural network (DPDNN) in terms of such quantitative indexes as peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) and human vision.


Sign in / Sign up

Export Citation Format

Share Document