scholarly journals A SVM-3D Based Encoderless Control of a Fault-Tolerant PMSM Drive

Electronics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1095
Author(s):  
Kamel Saleh ◽  
Mark Sumner

This paper exhibits a novel technique to obtain an encoderless speed control of a permanent magnet synchronous motor (PMSM) in the case of a loss of one phase. The importance of this work is that it presents solutions in order to maintain the operation of the system in various conditions. This will increase the reliability of the whole drive system to meet the safety issues required in some applications. To achieve that, a fault-tolerant inverter modulated through a 3-dimension space vector pulse width modulation technique (3D-SVPWM) is used. Besides that, an algorithm to obtain the exact position of the saturation saliency in the case of a loss of one phase is introduced to achieve a closed-loop field-oriented encoderless speed control and to further enhance the reliability of the whole drive system. This algorithm is based on measuring the transient stator current responses of the motor due to the insulated-gate bipolar transistors (IGBTs) switching actions. Then according to the operating condition (normal or a loss of one phase), the saliency position signals are constructed from the dynamic current responses. Simulation results are provided to demonstrate the effectiveness of the saliency tracking technique under normal and under a loss of one phase conditions. Moreover, the results verify the maximum reliability for the whole drive system that is achieved in this work through a continuous operation of the drive system under a loss of one phase condition and under encoderless speed control.

2016 ◽  
Vol 12 (1) ◽  
pp. 1-11
Author(s):  
Adel Obed ◽  
Ali Abdulabbas ◽  
Ahmed Chasib

The Permanent Magnet Synchronous Motor (PMSM) is commonly used as traction motors in the electric traction applications such as in subway train. The subway train is better transport vehicle due to its advantages of security, economic, health and friendly with nature. Braking is defined as removal of the kinetic energy stored in moving parts of machine. The plugging braking is the best braking offered and has the shortest time to stop. The subway train is a heavy machine and has a very high moment of inertia requiring a high braking torque to stop. The plugging braking is an effective method to provide a fast stop to the train. In this paper plugging braking system of the PMSM used in the subway train in normal and fault-tolerant operation is made. The model of the PMSM, three-phase Voltage Source Inverter (VSI) controlled using Space Vector Pulse Width Modulation technique (SVPWM), Field Oriented Control method (FOC) for independent control of two identical PMSMs and fault-tolerant operation is presented. Simulink model of the plugging braking system of PMSM in normal and fault tolerant operation is proposed using Matlab/Simulink software. Simulation results for different cases are given.


2021 ◽  
Vol 309 ◽  
pp. 01142
Author(s):  
S P Harish ◽  
S Sridhar ◽  
Omsekhar Indela ◽  
Kumaran G Kodeeswara ◽  
P. Parthiban

With the advent of electric vehicle multi-machine drives are attaining overwhelming responses from the researchers and industries in recent years, as compared to their counterpart of single machine drive. In this regard, the industries are looking for multi motor control with single inverter system with precise speed control. The solution of aforesaid problem lies with multi-leg inverter fed dual induction motor drives that are capable for high power ratings and other specific applications. Any faults in the system leads to the failure of the operation of the entire drive system. Hence condition monitoring of the entire drive system becomes of paramount significance. Considering the aforementioned points, this paper focuses on the fault analysis of five leg voltage source inverter feeding dual induction motors. The drive system is simulated using MATLAB/ SIMULINK for different pulse width modulation techniques like SPWM, SVPWM and Two Arm Modulation (TAM) Techniques. The effect on fault in the inverter like opening of the switch and shorting the switch, on the performance of the induction motors are analysed. Total Harmonic Distortion (THD) of the stator current for different modulation techniques are compared for the analysis purpose. From the results it is observed that the THD is less for SVPWM techniques as compared with SPWM and TAM method. But independent control of both the machine cannot be attained by SPWM and SVPWM method. For independent speed control TAM method is used. So a trade-off has to be done considering the requirement and THD. It is finally concluded that independent speed control is achieved at the cost of higher THD.


2014 ◽  
Vol 1039 ◽  
pp. 353-360
Author(s):  
Yu Ning ◽  
Su Rong Huang ◽  
Jin Gao ◽  
You Min Gong

This paper presents dual inverter power supply open-end winding of surface mounted permanent magnet synchronous motor (OW-SPMSM) drive system for fans and pumps energy saving by V/f control. On the principle of OW-SPMSM drive system, this paper puts forward a unified Sine wave pulse width modulation strategy (SPWM) of dual inverter, which is easy to real time implementation for the calculation of this method is less than SVPWM, its performance is as good as the SVPWM in terms of harmonic power balance. Accordingly, a power factor closed loop control was introduced into the drive system to achieve stable volts/hertz (V/F) control. The system simulation model was investigated in detail; its results show that the proposed drive system has greatly improved the system dynamic performance.


2021 ◽  
Vol 2 ◽  
Author(s):  
Tian-Hua Liu ◽  
Yu-Wei Wang

Fault tolerant drive systems have played an increasing role for electric vehicles in order to improve reliability, availability, and to reduce maintenance. For safety reason, a fault-tolerant drive system, which includes some redundant devices and a traditional motor drive system, has been developed. This fault-tolerant system executes real-time fault detection, diagnosis, isolation, and control to make the fault-tolerant drive system operate normally even though some faults have happened. In this paper, an AC/DC converter faults, which includes a single-phase full-bridge rectifier diode fault, a three-phase full-bridge rectifier diode fault, and a DC-link capacitor fault are investigated. The fault-tolerant processes include fault detection, diagnosis, isolation, and control to improve the reliability of the drive system and reduce the disturbances during faulty interval. A digital signal processor, manufactured by Texas Instruments, type TMS320F2808, is used as a control center to achieve the fault tolerant processes. Experimental results validate theoretical analysis to demonstrate the correctness and feasibility of the proposed methods. The proposed method can be easily implemented in industrial products due to its simplicity.


Author(s):  
Tomasz Rudnicki ◽  
Andrzej Sikora ◽  
Robert Czerwinski ◽  
Tadeusz Glinka

Purpose This paper aims to present the impact of Pulse Width Modulation (PWM) control frequency for specific Permanent Magnet Synchronous Motors (PMSMs) on the efficiency of the entire driving unit. Examinations were carried out for a PMSM unit with a power of 1 kW, rated speed of 1,000 rpm, and rated torque of 6 Nm. Design/methodology/approach The PWM frequency ranged from 4 to 20 kHz with increments of 1 kHz. Measurements were taken for each of the foregoing frequencies, for the different load torques, and for the different rotation speeds including overspeed. The results achieved allow the PWM control frequency to be properly adjusted for each PMSM to operate the entire driving unit in the most efficient way and, in consequence, save energy consumed by the drive. Findings Obtained results may be used as a kind of background for the design of drive system. Research limitations/implications For a specific PMSM-based drive system, one can find the optimal PWM control frequency. This frequency depends on the rotation speed and torque of the motor. However, the validity of the results presented in the paper is limited. They are valid for the specific motor drive under test and cannot be generalized easily. Originality/value This work shows that there is some maximal efficiency of the entire system depending on the rotation speed, load torque and switching frequency of the power transistors. For a specific motor working in a certain condition, we can find the minimum power loss.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
M. J. Hossain ◽  
M. A. Hoque ◽  
K. K. Islam

This paper presents a simplified fuzzy logic-based speed control scheme of an interior permanent magnet synchronous motor (IPMSM) above the base speed using a flux-weakening method. In this work, nonlinear expressions ofd-axis andq-axis currents of the IPMSM have been derived and subsequently incorporated in the control algorithm for the practical purpose in order to implement fuzzy-based flux-weakening strategy to operate the motor above the base speed. The fundamentals of fuzzy logic algorithms as related to motor control applications are also illustrated. A simplified fuzzy speed controller (FLC) for the IPMSM drive has been designed and incorporated in the drive system to maintain high performance standards. The efficacy of the proposed simplified FLC-based IPMSM drive is verified by simulation at various dynamic operating conditions. The simplified FLC is found to be robust and efficient. Laboratory test results of proportional integral (PI) controller-based IPMSM drive have been compared with the simulated results of fuzzy controller-based flux-weakening IPMSM drive system.


Author(s):  
Khalaf S. Gaeid ◽  
Mshari Aead Asker ◽  
Nada N. Tawfeeq ◽  
Salam Razooky Mahdi

The signal processing techniques and computer simulation play an important role in the fault diagnosis and tolerance of all types of machines in the first step of design. Permanent magnet synchronous motor (PMSM) and five phase inverter with sine wave pulse width modulation (SPWM) strategy is developed. The PMSM speed is controlled by vector control. In this work, a fault tolerant control (FTC) system in the PMSM using wavelet switching is introduced. The feature extraction property of wavelet analysis used the error as obtained by the wavelet de-noised signal as input to the mechanism unit to decide the healthy system. The diagnosis algorithm, which depends on both wavelet and vector control to generate PWM as current based manage any parameter variation. An open-end phase PMSM has a larger range of speed regulation than normal PMSM. Simulation results confirm the validity and effectiveness of the switching strategy.


Sign in / Sign up

Export Citation Format

Share Document