scholarly journals Partial Isolation Type Buried Channel Array Transistor (Pi-BCAT) for a Sub-20 nm DRAM Cell Transistor

Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1908
Author(s):  
Jin-sung Lee ◽  
Jin-hyo Park ◽  
Geon Kim ◽  
Hyun Duck Choi ◽  
Myoung Jin Lee

In this paper, we propose a new buried channel array transistor structure to solve the problem of current leakage occurring in the capacitors of dynamic random-access memory (DRAM) cells. This structure has a superior off current performance compared with three previous types of structures. In particular, the proposed buried channel array transistor has a 43% lower off current than the conventional asymmetric doping structure. Here, we show the range of the effective buried insulator parameter according to the depth of the buried gate, and we effectively show the range of improvement for the off current.

2016 ◽  
Vol 119 (6) ◽  
pp. 064101 ◽  
Author(s):  
Milan Pešić ◽  
Steve Knebel ◽  
Maximilian Geyer ◽  
Sebastian Schmelzer ◽  
Ulrich Böttger ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
pp. 114-118
Author(s):  
Wan-Jun Yin ◽  
Tao Wen ◽  
Wei Zhang

This paper presents the design analysis of Dynamic Random Access Memory (DRAM) with one transistor one diode (1T1D). The proposed structure consists of one transistor and one voltage controlled diode capacitor. The word and bit lines are connected with two voltage sources for the write operation. The source and drain of the NMOS is tied together to form the diode structure. The off-state leakage current is the main cause for the power dissipation of DRAM. Thus the improvement of power efficiency to the overall system is a critical task. The conventional DRAM cell contains one capacitor and one transistor. But the absence of capacitor in the proposed work is advantageous by means of compatibility, scalability, fabrication complexity, and cost. Tanner EDA working platform of 7 nm technology is used for the implementation of 1T1D DRAM cell in proposed work. This work achieve the power dissipation, read and write access time in the range of 2.647 mW, 0.04 μs and 0.021 μs respectively. Also, the parameter comparison is performed by changing the technologies from 10 nm to 20 nm for 1T1D DRAM cell design.


Author(s):  
Zongliang Huo ◽  
Seungjae Baik ◽  
Shieun Kim ◽  
In-seok Yeo ◽  
U-in Chung ◽  
...  

2021 ◽  
Vol 21 (8) ◽  
pp. 4216-4222
Author(s):  
Songyi Yoo ◽  
In-Man Kang ◽  
Sung-Jae Cho ◽  
Wookyung Sun ◽  
Hyungsoon Shin

A capacitorless one-transistor dynamic random-access memory cell with a polysilicon body (poly-Si 1T-DRAM) has a cost-effective fabrication process and allows a three-dimensional stacked architecture that increases the integration density of memory cells. Also, since this device uses grain boundaries (GBs) as a storage region, it can be operated as a memory cell even in a thin body device. GBs are important to the memory characteristics of poly-Si 1T-DRAM because the amount of trapped charge in the GBs determines the memory’s data state. In this paper, we report on a statistical analysis of the memory characteristics of poly-Si 1T-DRAM cells according to the number and location of GBs using TCAD simulation. As the number of GBs increases, the sensing margin and retention time of memory cells deteriorate due to increasing trapped electron charge. Also, “0” state current increases and memory performance degrades in cells where all GBs are adjacent to the source or drain junction side in a strong electric field. These results mean that in poly-Si 1T-DRAM design, the number and location of GBs in a channel should be considered for optimal memory performance.


2004 ◽  
Vol 43 (5A) ◽  
pp. 2457-2461 ◽  
Author(s):  
Yoshikazu Tsunemine ◽  
Tomonori Okudaira ◽  
Keiichiro Kashihara ◽  
Akie Yutani ◽  
Hiroki Shinkawata ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document