scholarly journals Estimation of Thermal Performance and Heat Loss in Plastic Greenhouses with and without Thermal Curtains

Energies ◽  
2018 ◽  
Vol 11 (3) ◽  
pp. 578 ◽  
Author(s):  
Hyung-Kweon Kim ◽  
Geum-Choon Kang ◽  
Jong-Pil Moon ◽  
Tae-Seok Lee ◽  
Sung-Sik Oh

Greenhouses are important for stable food production, but require large amounts of energy to maintain their microclimate in regions with harsh climates. This study assessed the internal thermal insulation performance of thermal curtains in double-layered plastic greenhouses in Korea in winter using cover surface temperature changes and heat transfer coefficients (U values). The thermal curtain performance increased as the temperatures of the inner cover surface increased and the outer cover surface decreased. The outer cover surface temperature with thermal curtains was almost uniformly 1.9 °C lower than that without thermal curtains, whereas the inner cover surface temperature was higher, demonstrating the warming effect of thermal curtain use. Under a constant indoor and outdoor air temperature difference, the daily average heating energy consumption was directly proportional to the U value. The U values were 2.76 W m−2 °C−1 with thermal curtains and 3.85 W m−2 °C−1 without thermal curtains. In double-layered plastic greenhouses that were covered with 0.1-mm-thick polyethylene, incorporating thermal curtains at night resulted in energy savings of about 28.7%, which was related to the decrease in U values. Installing and using thermal curtains at night in winter is a highly economical method for heating savings. These results can be used to promote energy savings in greenhouses in harsh climates.

Author(s):  
H Long ◽  
A A Lord ◽  
D T Gethin ◽  
B J Roylance

This paper investigates the effects of gear geometry, rotational speed and applied load, as well as lubrication conditions on surface temperature of high-speed gear teeth. The analytical approach and procedure for estimating frictional heat flux and heat transfer coefficients of gear teeth in high-speed operational conditions was developed and accounts for the effect of oil mist as a cooling medium. Numerical simulations of tooth temperature based on finite element analysis were established to investigate temperature distributions and variations over a range of applied load and rotational speed, which compared well with experimental measurements. A sensitivity analysis of surface temperature to gear configuration, frictional heat flux, heat transfer coefficients, and oil and ambient temperatures was conducted and the major parameters influencing surface temperature were evaluated.


Author(s):  
Richard A. Riemke ◽  
Cliff B. Davis ◽  
Richard R. Schultz

The heat transfer boundary conditions used in the RELAP5-3D computer program have evolved over the years. Currently, RELAP5-3D has the following options for the heat transfer boundary conditions: (a) heat transfer correlation package option, (b) non-convective option (from radiation/conduction enclosure model or symmetry/insulated conditions), and (c) other options (setting the surface temperature to a volume fraction averaged fluid temperature of the boundary volume, obtaining the surface temperature from a control variable, obtaining the surface temperature from a time-dependent general table, obtaining the heat flux from a time-dependent general table, or obtaining heat transfer coefficients from either a time- or temperature-dependent general table). These options will be discussed, including the more recent ones.


2011 ◽  
Vol 82 ◽  
pp. 362-367 ◽  
Author(s):  
Alexandra Byström ◽  
Ulf Wickström ◽  
Milan Veljkovic

The concept of Adiabatic Surface Temperature (AST) opens possibilities to calculate heat transfer to a solid surface based on one temperature instead of two as is needed when heat transfer by both radiation and convection must be considered. The Adiabatic Surface Temperature is defined as the temperature of a surface which cannot absorb or lose heat to the environment, i.e. a perfect insulator. Accordingly, the AST is a weighted mean temperature of the radiation temperature and the gas temperature depending on the heat transfer coefficients. A determining factor for introducing the concept of AST is that it can be measured with a cheap and robust method called the plate thermometer (PT), even under harsh fire conditions. Alternative methods for measuring thermal exposure under similar conditions involve water cooled heat flux meters that are in most realistic situations difficult to use and very costly and impractical. This paper presents examples concerning how the concept of AST can be used in practice both in reaction-to-fire tests and in large scale scenarios where structures are exposed to high and inhomogeneous temperature conditions.


Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 383 ◽  
Author(s):  
Robin Masser ◽  
Karl Heinz Hoffmann

Hybrid drive systems able to recover and reuse braking energy of the vehicle can reduce fuel consumption, air pollution and operating costs. Among them, hydraulic recuperation systems are particularly suitable for commercial vehicles, especially if they are already equipped with a hydraulic system. Thus far, the investigation of such systems has been limited to individual components or optimizing their control. In this paper, we focus on thermodynamic effects and their impact on the overall systems energy saving potential using endoreversible thermodynamics as the ideal framework for modeling. The dynamical behavior of the hydraulic recuperation system as well as energy savings are estimated using real data of a vehicle suitable for application. Here, energy savings accelerating the vehicle around 10% and a reduction in energy transferred to the conventional disc brakes around 58% are predicted. We further vary certain design and loss parameters—such as accumulator volume, displacement of the hydraulic unit, heat transfer coefficients or pipe diameter—and discuss their influence on the energy saving potential of the system. It turns out that heat transfer coefficients and pipe diameter are of less importance than accumulator volume and displacement of the hydraulic unit.


2003 ◽  
Vol 125 (1) ◽  
pp. 83-89 ◽  
Author(s):  
Nirm V. Nirmalan ◽  
Ronald S. Bunker ◽  
Carl R. Hedlund

A new method has been developed and demonstrated for the non-destructive, quantitative assessment of internal heat transfer coefficient distributions of cooled metallic turbine airfoils. The technique employs the acquisition of full-surface external surface temperature data in response to a thermal transient induced by internal heating/cooling, in conjunction with knowledge of the part wall thickness and geometry, material properties, and internal fluid temperatures. An imaging Infrared camera system is used to record the complete time history of the external surface temperature response during a transient initiated by the introduction of a convecting fluid through the cooling circuit of the part. The transient data obtained is combined with the cooling fluid network model to provide the boundary conditions for a finite element model representing the complete part geometry. A simple 1-D lumped thermal capacitance model for each local wall position is used to provide a first estimate of the internal surface heat transfer coefficient distribution. A 3-D inverse transient conduction model of the part is then executed with updated internal heat transfer coefficients until convergence is reached with the experimentally measured external wall temperatures as a function of time. This new technique makes possible the accurate quantification of full-surface internal heat transfer coefficient distributions for prototype and production metallic airfoils in a totally nondestructive and non-intrusive manner. The technique is equally applicable to other material types and other cooled/heated components.


2013 ◽  
Vol 59 (4) ◽  
pp. 523-546 ◽  
Author(s):  
J. Sousa ◽  
L. Bragança ◽  
M. Almeida ◽  
P. Silva

Abstract The article aims to evaluate the Portuguese building stock energy policies and strategy for energy saving in buildings among the EU members. It was found out the average heat transfer coefficients of the main structural elements of Portuguese Buildings and analyzed the U-values of this elements considering different time periods. The fundamentals of this study were funded by the Agency for Development and Innovation (ADI) and co-financed by the European Regional Development Fund (FEDER) through the Operational Program for Competitiveness Factors (POFC) assigned to the Building Physics and Construction Technology Laboratory with the reference SB Tool SPT_2011_4.


1999 ◽  
Vol 202 (12) ◽  
pp. 1589-1602 ◽  
Author(s):  
S. Ward ◽  
J.M.V. Rayner ◽  
U. Möller ◽  
D.M. Jackson ◽  
W. Nachtigall ◽  
...  

Infrared thermography was used to measure heat transfer by radiation and the surface temperature of starlings (Sturnus vulgaris) (N=4) flying in a wind tunnel at 6–14 m s-1 and at 15–25 degrees C. Heat transfer by forced convection was calculated from bird surface temperature and biophysical modelling of convective heat transfer coefficients. The legs, head and ventral brachial areas (under the wings) were the hottest parts of the bird (mean values 6.8, 6.0 and 5.3 degrees C, respectively, above air temperature). Thermal gradients between the bird surface and the air decreased at higher air temperatures or during slow flight. The legs were trailed in the air stream during slow flight and when air temperature was high; this could increase heat transfer from the legs from 1 to 12 % of heat transfer by convection, radiation and evaporation (overall heat loss). Overall heat loss at a flight speed of 10.2 m s-1 averaged 11. 3 W, of which radiation accounted for 8 % and convection for 81 %. Convection from the ventral brachial areas was the most important route of heat transfer (19 % of overall heat loss). Of the overall heat loss, 55 % occurred by convection and radiation from the wings, although the primaries and secondaries were the coolest parts of the bird (2.2-2.5 degrees C above air temperature). Calculated heat transfer from flying starlings was most sensitive to accurate measurement of air temperature and convective heat transfer coefficients.


1999 ◽  
Author(s):  
Wayne N. O. Turnbull ◽  
William E. Carscallen

Abstract An analytical and numerical investigation has been carried out to ascertain the possibility of using a pulsed periodic surface heat flux to measure local surface heat transfer coefficients. The proposed technique is an extension of a previously proven experimental method. It is based upon the premise that the harmonics of a surface temperature response to an imposed periodic pulse will display phase shifting behavior that is a function of the thermophysical properties of the surface, the local heat transfer coefficient and the harmonic frequency. The phase behavior is not a function of the magnitude of the energy deposited by the pulse. Since phase behavior is being investigated there is no requirement to calibrate the surface temperature-sensing device. The numerical solution confirms the analytical results, which were obtained using a non-rigorous mathematical assumption. Results indicate that in order to maximize the sensitivity of the proposed experimental technique the pulse frequency should be kept low, the surface layer thin and the substrate thermal conductivity and diffusivity as low as possible.


Sign in / Sign up

Export Citation Format

Share Document