scholarly journals Petrophysical Characterization and Fractal Analysis of Carbonate Reservoirs of the Eastern Margin of the Pre-Caspian Basin

Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 78 ◽  
Author(s):  
Feng Sha ◽  
Lizhi Xiao ◽  
Zhiqiang Mao ◽  
Chen Jia

Petrophysical properties including pore structure and permeability are essential for successful evaluation and development of reservoirs. In this paper, we use casting thin section and mercury intrusion capillary pressure (MICP) data to investigate the pore structure characterization, permeability estimation, and fractal characteristics of Carboniferous carbonate reservoirs in the middle blocks of the eastern margin of the Pre-Caspian Basin. Rock casting thin sections show that intergranular and intragranular dissolution pores are the main storage spaces. The pore throats greater than 1 μm and lower than 0.1 μm account for 47.98% and 22.85% respectively. A permeability prediction model was proposed by incorporating the porosity, Swanson, and R35 parameters. The prediction result agrees well with the core sample data. Fractal dimensions based on MICP curves range from 2.29 to 2.77 with an average of 2.61. The maximum mercury intrusion saturation is weakly correlated with the fractal dimension, while the pore structure parameters such as displacement pressure and median radii have no correlation with fractal dimension, indicating that single fractal dimension could not capture the pore structure characteristics. Finally, combined with the pore types, MICP shape, and petrophysical parameters, the studied reservoirs were classified into four types. The productivity shows a good correlation with the reservoir types.

Fractals ◽  
2018 ◽  
Vol 26 (02) ◽  
pp. 1840017 ◽  
Author(s):  
FUYONG WANG ◽  
KUN YANG ◽  
JIANCHAO CAI

Tight oil sandstones have the characteristics of narrow pore throats, complex pore structures and strong heterogeneities. Using nuclear magnetic resonance (NMR) and mercury intrusion porosimetry (MIP), this paper presents an advanced fractal analysis of the pore structures and petrophysical properties of the tight oil sandstones from Yanchang Formation, Ordos Basin of China. Firstly, nine typical tight oil sandstone core samples were selected to conduct NMR and MIP test for pore structure characterization. Next, with the pore size distribution derived from MIP, it was found that the relationships between NMR transverse relaxation time [Formula: see text] and pore size are more accordant with the power function relations, which were applied to derive pore size distribution from NMR rather than the linear relation. Moreover, fractal dimensions of micropores, mesopores and macropores were calculated from NMR [Formula: see text] spectrum. Finally, the relationships between the fractal dimensions of different size pores calculated from NMR [Formula: see text] spectrum and petrophysical properties of tight oil sandstones were analyzed. These studies demonstrate that the combination of NMR and MIP can improve the accuracy of pore structure characterization and fractal dimensions calculated from NMR [Formula: see text] spectrum are effective for petrophysical properties analysis.


Minerals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 543 ◽  
Author(s):  
Wang ◽  
Jiang ◽  
Jiang ◽  
Chang ◽  
Zhu ◽  
...  

Pore structure determines the gas occurrence and storage properties of gas shale and is a vital element for reservoir evaluation and shale gas resources assessment. Field emission scanning electron microscopy (FE‐SEM), high‐pressure mercury intrusion porosimetry (HMIP), and low‐pressure N2/CO2 adsorption were used to qualitatively and quantitatively characterize full‐scale pore structure of Longmaxi (LM) shale from the southern Sichuan Basin. Fractal dimension and its controlling factors were also discussed in our study. Longmaxi shale mainly developed organic matter (OM) pores, interparticle pores, intraparticle pores, and microfracture, of which the OM pores dominated the pore system. The pore diameters are mainly distributed in the ranges of 0.4–0.7 nm, 2–20 nm and 40–200 μm. Micro‐, meso‐ and macropores contribute 24%, 57% and 19% of the total pore volume (PV), respectively, and 64.5%, 34.6%, and 0.9% of the total specific surface area (SSA). Organic matter and clay minerals have a positive contribution to pore development. While high brittle mineral content can inhibit shale pore development. The fractal dimensions D1 and D2 which represents the roughness of the shale surface and irregularity of the space structure, respectively, are calculated based on N2 desorption data. The value of D1 is in the range of 2.6480–2.7334 (average of 2.6857), D2 is in the range of 2.8924–2.9439 (average of 2.9229), which indicates that Longmaxi shales have a rather irregular pore morphology as well as complex pore structure. Both PV and SSA positively correlated with fractal dimensions D1 and D2. The fractal dimension D1 decreases with increasing average pore diameter, while D2 is on the contrary. These results suggest that the small pores have a higher roughness surface, while the larger pores have a more complex spatial structure. The fractal dimensions of shale are jointly controlled by OM, clays and brittle minerals. The TOC content is the key factor which has a positive correlation with the fractal dimension. Clay minerals have a negative influence on fractal dimension D1, and positive influence D2, while brittle minerals show an opposite effect compared with clay minerals.


Minerals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 127 ◽  
Author(s):  
Zhuo Li ◽  
Zhikai Liang ◽  
Zhenxue Jiang ◽  
Fenglin Gao ◽  
Yinghan Zhang ◽  
...  

The Lower Cretaceous Shahezi shales are the targets for lacustrine shale gas exploration in Changling Fault Depression (CFD), Southern Songliao Basin. In this study, the Shahezi shales were investigated to further understand the impacts of rock compositions, including organic matters and minerals on pore structure and fractal characteristics. An integrated experiment procedure, including total organic carbon (TOC) content, X-ray diffraction (XRD), field emission-scanning electron microscope (FE-SEM), low pressure nitrogen physisorption (LPNP), and mercury intrusion capillary pressure (MICP), was conducted. Seven lithofacies can be identified according to on a mineralogy-based classification scheme for shales. Inorganic mineral hosted pores are the most abundant pore type, while relatively few organic matter (OM) pores are observed in FE-SEM images of the Shahezi shales. Multimodal pore size distribution characteristics were shown in pore width ranges of 0.5–0.9 nm, 3–6 nm, and 10–40 nm. The primary controlling factors for pore structure in Shahezi shales are clay minerals rather than OM. Organic-medium mixed shale (OMMS) has the highest total pore volumes (0.0353 mL/g), followed by organic-rich mixed shale (ORMS) (0.02369 mL/g), while the organic-poor shale (OPS) has the lowest pore volumes of 0.0122 mL/g. Fractal dimensions D1 and D2 (at relative pressures of 0–0.5 and 0.5–1 of LPNP isotherms) were obtained using the Frenkel–Halsey–Hill (FHH) method, with D1 ranging from 2.0336 to 2.5957, and D2 between 2.5779 and 2.8821. Fractal dimensions are associated with specific lithofacies, because each lithofacies has a distinctive composition. Organic-medium argillaceous shale (OMAS), rich in clay, have comparatively high fractal dimension D1. In addition, organic-medium argillaceous shale (ORAS), rich in TOC, have comparatively high fractal dimension D2. OPS shale contains more siliceous and less TOC, with the lowest D1 and D2. Factor analysis indicates that clay contents is the most significant factor controlling the fractal dimensions of the lacustrine Shahezi shale.


Fractals ◽  
2019 ◽  
Vol 27 (01) ◽  
pp. 1940006 ◽  
Author(s):  
LEI ZHANG ◽  
XUEJUAN ZHANG ◽  
HAO CHAI ◽  
YAOCAI LI ◽  
YONGJIE ZHOU

Fractal dimension is an important parameter in the evaluation of tight reservoirs. For an outcrop section of the Nenjiang formation in the Songliao Basin, China, the pore structure and pore fractal characteristics of shale parasequences were investigated using fractal theory. In addition, factors causing pore structure changes were analyzed using the results of low-temperature nitrogen adsorption and scanning electron microscope (SEM) experiments. Conducive to gas migration and secondary pores development such as dissolution, results showed that nanoscale pores dominated by fracture-like morphology and consequent good internal connectivity were observed in each pore size section within the target layer. Each parasequence is characterized by a sequential upward decrease of average pore size and an upward increase of total pore volume, with an increasing number of pores from 2[Formula: see text]nm to 50[Formula: see text]nm. Pores are isolated from each other, with poor connectivity and relatively complex composition of brittle minerals and clay minerals. Main components of the brittle minerals, quartz and feldspar, occur in 20–50% and higher clay mineral content ranging from 50% to 70%. In the parasequence cycle, clay mineral gradually decreases while the brittle mineral content increases. Fractal dimension is negatively correlated with clay mineral content and positively correlated with brittle mineral (quartz and feldspar) content. The fractal dimension calculated by the imaging method and the FHH method shows an upward increasing tendency in each of the parasequence cycles. This is as a result of different phenomena, varied sediment hydrodynamic forces leading to particle size differences and increased brittle minerals resulting in microcracks, therefore, the fractal dimension of the large pores (imaging method) increases upward in the parasequence. Simultaneously, with increased content and accompanied dissolution of brittle minerals causing an increase of small pores from base to top of the parasequence, the fractal dimension of the small pores (FHH method) grows.


2014 ◽  
Vol 900 ◽  
pp. 689-692
Author(s):  
Lei Gong ◽  
Shuai Gao ◽  
Shu Ju Guo ◽  
Jian Guo Huang ◽  
Xian Xian Tao

Fracture is an important controlling factor for the distribution of natural gas reservoirs in the tight conglomerate reservoirs in the Lower Jurassic Zhenzhuchong Formation at the north of Western Sichuan basin. Using the data of outcrops, cores, image logs and thin sections, combined with experimental analysis, we analyze the fracture origin types, distribution characteristics and formation sequences. There are three types of fractures, i.e. tectonic fractures, diagenetic fractures and original fractures in the tight conglomerate reservoirs. Among them, tectonic fractures are dominant, which can be classified into four sets, i.e. E-W, nearly S-W, NWW-SEE, NEE-SWW orientations. According to the statistics of areal density and fractal dimension, the average fracture areal density is 0.31cm/cm2, with the bulk in the range of 0.15-0.60cm/cm2. The fracture fractal dimensions are distributed at 0.95-1.70. There is a well positive correlation between fracture areal density and fractal dimension. Micro-fractures are important channels that connect matrix intergranular pores and intragranular dissolved pores, which improve the connectivity among pores. The tectonic fractures in the study area were formed in two periods, i.e. the end of Cretaceous and the end of Neogene.


2021 ◽  
Vol 21 (1) ◽  
pp. 682-692
Author(s):  
Youzhi Wang ◽  
Cui Mao

The pore structure characteristic is an important index to measure and evaluate the storage capacity and fracturing coal reservoir. The coal of Baliancheng coalfield in Hunchun Basin was selected for experiments including low temperature nitrogen adsorption method, Argon Ion milling Scanning Electron Microscopy (Ar-SEM), Nuclear Magnetic Resonance (NMR), X-ray diffraction method, quantitative mineral clay analysis method. The pore structure of coal was quantitatively characterized by means of fractal theory. Meanwhile, the influences of pores fractal dimension were discussed with experiment data. The results show that the organic pores in Baliancheng coalfield are mainly plant tissue pores, interparticle pores and gas pores, and the mineral pores are corrosion pores and clay mineral pores. There are mainly slit pore and wedge-shaped pore in curve I of Low temperature nitrogen adsorption. There are ink pores in curve II with characteristics of a large specific surface area and average pore diameter. The two peaks of NMR T2 spectrum indicate that the adsorption pores are relatively developed and their connectivity is poor. The three peaks show the seepage pores and cracks well developed, which are beneficial to improve the porosity and permeability of coal reservoir. When the pore diameter is 2–100 nm, the fractal dimensions D1 and D2 obtained by nitrogen adsorption experiment. there are positive correlations between water content and specific surface area and surface fractal dimension D1, The fractal dimension D2 was positively and negatively correlated with ash content and average pore diameters respectively. The fractal dimensions DN1 and DN2 were obtained by using the NMR in the range of 0.1 μm˜10 μm. DN1 are positively correlated with specific surface area of adsorption pores. DN2 are positively correlated volume of seepage pores. The fractal dimension DM and dissolution hole fractal dimension Dc were calculated by SEM image method, respectively controlled by clay mineral and feldspar content. There is a remarkable positive correlation between D1 and DN1 and Langmuir volume of coal, so fractal dimension can effectively quantify the adsorption capacity of coal.


SPE Journal ◽  
2015 ◽  
Vol 20 (06) ◽  
pp. 1238-1253 ◽  
Author(s):  
A.S.. S. Zakaria ◽  
H.A.. A. Nasr-El-Din ◽  
M.. Ziauddin

Summary Carbonate formations are very complex in their pore structure and exhibit a wide variety of pore classes, such as interparticle porosity, moldic porosity, vuggy porosity, and microporosity. Geologists have defined carbonate pore classes on the basis of sedimentology, thin sections, and porosity/permeability relationships, but the question remains concerning how these pore classes govern the acid flow through porous media. Core samples from six different carbonates, mainly limestone, were selected for the study. The samples were first investigated with thin-section analysis, high-pressure mercury-injection tests, and nuclear-magnetic-resonance measurements for pore-structure characterization, and X-ray diffraction for mineralogy examination. Next, tracer experiments were conducted, and the tracer-concentration profiles were analyzed to quantify the carbonate pore-scale heterogeneity. The heterogeneity is expressed with a parameter f—the available fraction of pore structure contributing to the flow. The data were used to study the flow of acid through carbonate rocks and correlate the pore classes to the acid response. More than 30 acid-coreflood experiments were conducted at 150°F and a hydrochloric acid concentration of 15 wt% on 1.5 × 6-in. core samples at different injection rates on each carbonate rock type. The objective of these sets of experiments is to determine the acid pore volume to breakthrough for each carbonate pore class. The findings of this study help us to connect the results from different characterization methods to the acid flow through the porous media of carbonate rocks. It was also found that the response of the acid depends on the carbonate pore classes. Application to the design of matrix acid treatments in carbonate rocks is discussed.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Fengjuan Dong ◽  
Na Liu ◽  
Zhen Sun ◽  
Xiaolong Wei ◽  
Haonan Wang ◽  
...  

The complex pore structure of low-permeability sandstone reservoir makes it difficult to characterize the heterogeneity of pore throat. Taking the reservoir of Sanjianfang formation in QL oilfield as an example, the fractal dimension of different storage spaces is calculated by using fractal theory based on casting thin section, scanning electron microscope, and high-pressure mercury injection, and the correlation between porosity, permeability, and contribution of different storage space permeabilities is analyzed. The results show that the reservoir of Sanjianfang formation in QL oilfield mainly develops small pores, fine pores, and micropores, and the fractal dimension of micropore structure is between 2.6044 and 2.9982, with an average value of 2.8316. The more complex the pore structure is, the stronger the microheterogeneity is. The higher the fractal dimension, the more complex the pore structure and the smaller the porosity and permeability. The fractal dimensions of small pores, fine pores, and micropores increase successively with the decrease in pore radius, and the microstructure heterogeneity of large pores is weaker than that of small pores. It provides a theoretical basis for the exploration and development of low-permeability sandstone reservoirs.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Yuqi Huang ◽  
Peng Zhang ◽  
Jinchuan Zhang ◽  
Xuan Tang ◽  
Chengwei Liu ◽  
...  

The pore structure of marine-continental transitional shales from the Longtan Formation in Guizhou, China, was investigated using fractal dimensions calculated by the FHH (Frenkel-Halsey-Hill) model based on low-temperature N2 adsorption data. Results show that the overall D 1 (fractal dimension under low relative pressure, P / P 0 ≤ 0.5 ) and D 2 (fractal dimension under high relative pressure, P / P 0 > 0.5 ) values of Longtan shales were relatively large, with average values of 2.7426 and 2.7838, respectively, indicating a strong adsorption and storage capacity and complex pore structure. The correlation analysis of fractal dimensions with specific surface area, average pore size, and maximum gas absorption volume indicates that D 1 can comprehensively characterize the adsorption and storage capacity of shales, while D 2 can effectively characterize the pore structure complexity. Further correlation among pore fractal dimension, shale organic geochemical parameters, and mineral composition parameters shows that there is a significant positive correlation between fractal dimensions and organic matter abundance as well as a complex correlation between fractal dimension and organic matter maturity. Fractal dimensions increase with an increase in clay mineral content and pyrite content but decrease with an increase in quartz content. Considering the actual geological evaluation and shale gas exploitation characteristics, a lower limit for D 1 and upper limit for D 2 should be set as evaluation criteria for favorable reservoirs. Combined with the shale gas-bearing property test results of Longtan shales in Guizhou, the favorable reservoir evaluation criteria are set as D 1 ≥ 2.60 and D 2 ≤ 2.85 . When D 1 is less than 2.60, the storage capacity of the shales is insufficient. When D 2 is greater than 2.85, the shale pore structure is too complicated, resulting in poor permeability and difficult exploitation.


Sign in / Sign up

Export Citation Format

Share Document