scholarly journals Mechanism Reduction and Bunsen Burner Flame Verification of Methane

Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 97
Author(s):  
Haitao Lu ◽  
Fuqiang Liu ◽  
Yulan Wang ◽  
Xiongjie Fan ◽  
Jinhu Yang ◽  
...  

Based on directed relation graph with error propagation methods, 39 species and 231 reactions skeletal mechanism were obtained from Mech_56.54 (113 species and 710 reactions) mechanism of methane. The ignition delay times, laminar flame propagation speed, and important species were calculated using the simplified mechanism at different pressures and equivalence ratios. The simulation results were in good agreement with that of detailed mechanisms and experimental data. The numerical simulation of the Bunsen burner jet flame was carried out using the simplified methane mechanism, and the simulation results well reproduced the temperature, flow fields and distribution of important species at flame zone. The compact methane reduced mechanism can not only correctly respond to its dynamic characteristics, but also can be well used for numerical simulation, which is of great significance in engineering applications.

2020 ◽  
Vol 143 (7) ◽  
Author(s):  
Van Vang Le ◽  
Anh Tuan Hoang ◽  
Sandro Nižetić ◽  
Aykut I. Ölçer

Abstract Global concerns about CO2 levels in the atmosphere, energy security, and the depletion of fossil fuel supply have been the key motivation to develop bio-based fuel resources, which leads to promising and potential strategies of renewable and carbon-neutral biofuels. Among biofuels being strongly developed, 2,5-dimethylfuran (DMF) is a new alternative biofuel candidate since DMF could be synthesized from available and durable lignocellulosic biomass, as well as DMF's physicochemical properties were found to be similar to those of fossil fuels. Therefore, the comprehensive investigation on DMF is very essential before putting DMF into the commercial scale and the engine application. In this current work, the temporal evolutions of laminar flame characteristics including laminar burning velocities, unstretched flame propagation speed, and Schlieren images were critically reviewed based on the comparison of DMF with other fuels. Besides, flame instabilities were also evaluated in detail. Finally, ignition delay times were thoroughly analyzed with the variation of the initial parameters such as temperature, pressure, and equivalent ratio, suggesting that DMF could become the potential fuel for the spark ignition engine. In the future, the experimental studies on the real engines fueled with DMF should be carefully and completely performed to have a comprehensive evaluation of this promising biofuel class.


2006 ◽  
Vol 65 (16) ◽  
pp. 1533-1546
Author(s):  
Yu. Ye. Gordienko ◽  
S. A. Zuev ◽  
V. V. Starostenko ◽  
V. Yu. Tereshchenko ◽  
A. A. Shadrin

Author(s):  
Jialei Song ◽  
Yong Zhong ◽  
Ruxu Du ◽  
Ling Yin ◽  
Yang Ding

In this paper, we investigate the hydrodynamics of swimmers with three caudal fins: a round one corresponding to snakehead fish ( Channidae), an indented one corresponding to saithe ( Pollachius virens), and a lunate one corresponding to tuna ( Thunnus thynnus). A direct numerical simulation (DNS) approach with a self-propelled fish model was adopted. The simulation results show that the caudal fin transitions from a pushing/suction combined propulsive mechanism to a suction-dominated propulsive mechanism with increasing aspect ratio ( AR). Interestingly, different from a previous finding that suction-based propulsion leads to high efficiency in animal swimming, this study shows that the utilization of suction-based propulsion by a high- AR caudal fin reduces swimming efficiency. Therefore, the suction-based propulsive mechanism does not necessarily lead to high efficiency, while other factors might play a role. Further analysis shows that the large lateral momentum transferred to the flow due to the high depth of the high- AR caudal fin leads to the lowest efficiency despite the most significant suction.


2021 ◽  
Vol 13 (2) ◽  
pp. 168781402199811
Author(s):  
Wu Xianfang ◽  
Du Xinlai ◽  
Tan Minggao ◽  
Liu Houlin

The wear-ring abrasion can cause performance degradation of the marine centrifugal pump. In order to study the effect of front and back wear-ring clearance on a pump, test and numerical simulation were used to investigate the performance change of a pump. The test results show that the head and efficiency of pump decrease by 3.56% and 9.62% respectively at 1.0 Qd due to the wear-ring abrasion. Under 1.0 Qd, with the increase of the front wear-ring the vibration velocity at pump foot increases from 0.4 mm/s to 1.0 mm/s. The axis passing frequency (APF) at the measuring points increases significantly and there appears new characteristic frequency of 3APF and 4APF. The numerical simulation results show that the front wear-ring abrasion affects the flow at the inlet of the front chamber of the pump and impeller passage. And the back wear-ring abrasion has obvious effect on the flow in the back chamber of the pump and impeller passage, while the multi-malfunction of the front wear-ring abrasion and back wear-ring abrasion has the most obvious effect on the flow velocity and flow stability inside pump. The pressure pulsation at Blade Passing Frequency (BPF) of the three schemes all decrease with the increase of the clearance.


2020 ◽  
Vol 9 (1) ◽  
pp. 27
Author(s):  
Hitoshi Tanaka ◽  
Nguyen Xuan Tinh ◽  
Xiping Yu ◽  
Guangwei Liu

A theoretical and numerical study is carried out to investigate the transformation of the wave boundary layer from non-depth-limited (wave-like boundary layer) to depth-limited one (current-like boundary layer) over a smooth bottom. A long period of wave motion is not sufficient to induce depth-limited properties, although it has simply been assumed in various situations under long waves, such as tsunami and tidal currents. Four criteria are obtained theoretically for recognizing the inception of the depth-limited condition under waves. To validate the theoretical criteria, numerical simulation results using a turbulence model as well as laboratory experiment data are employed. In addition, typical field situations induced by tidal motion and tsunami are discussed to show the usefulness of the proposed criteria.


2014 ◽  
Vol 496-500 ◽  
pp. 642-645
Author(s):  
Yun Wang ◽  
Wei Zhang

In view of power system in water-air UAV requirements, combine with the centrifugal impeller for aero-engine and the pump impeller. The design of a impeller of centrifugal compressor can work on the air and in the water for the new concept of air-water engine. With 3D design and a 3D CFD solver on it and analysis the results of numerical simulation. Results show that the designed impeller successfully reached the goal on the air and in the water. The experiences accumulated in this procedure are useful for similar impeller aerodynamic designs.


2012 ◽  
Vol 204-208 ◽  
pp. 4884-4887
Author(s):  
Jian Feng Wu ◽  
Cai Hua Wang ◽  
Chang Li Song

The numerical simulation of construction is to obtain the desired accuracy. It depends on the theoretical basis of the calculator and selection of the various important factors in the actual operation. For this problem, this paper adopting the current code for the design of building structures as the comparison standard, using the FLUENT software, taking the numerical simulation results of a high building’s wind load shape coefficient of for example, discussing the influence of four kinds of the convective terms discretization scheme, respectively the first-order upwind, the second order upwind , power law and Quadratic upwind interpolation for convective kinematics, on the simulation results of architectural numerical wind tunnel, provides the reference for the rational use of numerical wind tunnel method.


2021 ◽  
Vol 11 (10) ◽  
pp. 4709
Author(s):  
Dacheng Huang ◽  
Jianrun Zhang

To explore the mechanical properties of the braided corrugated hose, the space curve parametric equation of the braided tube is deduced, specific to the structural features of the braided tube. On this basis, the equivalent braided tube model is proposed based on the same axial stiffness in order to improve the calculational efficiency. The geometric model and the Finite Element Model of the DN25 braided corrugated hose is established. The numerical simulation results are analyzed, and the distribution of the equivalent stress and frictional stress is discussed. The maximum equivalent stress of the braided corrugated hose occurs at the braided tube, with the value of 903MPa. The maximum equivalent stress of the bellows occurs at the area in contact with the braided tube, with the value of 314MPa. The maximum frictional stress between the bellows and the braided tube is 88.46MPa. The tensile experiment of the DN25 braided corrugated hose is performed. The simulation results are in good agreement with test data, with a maximum error of 9.4%, verifying the rationality of the model. The study is helpful to the research of the axial stiffness of the braided corrugated hose and provides the base for wear and life studies on the braided corrugated hose.


2011 ◽  
Vol 19 (03) ◽  
pp. 177-183 ◽  
Author(s):  
JIN-BO CHEN ◽  
QING-GANG QIU

The technique of horizontal-tube falling film has been used in the cooling and heating industries such as refrigeration systems, heating systems and ocean thermal energy conversion systems. The comprehensive performance of evaporator is directly affected by the film distribution characteristics outside tubes. In this paper, numerical investigation was performed to predict the film characteristics outside the tubes in horizontal-tube falling film evaporator. The effects of liquid flow rate, tube diameter and the circular degree of tube on the film thickness were presented. The numerical simulation results were compared with that of the empirical equations for calculating the falling film thickness, and agreements between them were reasonable. Numerical simulation results show that, at the fixed fluid flow density, the liquid film is thicker on the upper and lower tube and the thinnest liquid film appears at angle of about 120°. The results also indicate that, when the fluid flow density decreases to a certain value, the local dryout spot on the surface of the tube would occur. In addition, the film thickness decreases with the increases of the tube diameter at the fixed fluid flow density.


Sign in / Sign up

Export Citation Format

Share Document