scholarly journals Multiple-Point Voltage Control to Minimize Interaction Effects in Power Systems

Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 274 ◽  
Author(s):  
Yun-Hyuk Choi ◽  
Yoon-Sung Cho

This paper proposes an advanced continuous voltage control method that implements multiple-point control to ensure peak power system performance. Most control schemes utilize generators to regulate the pilot point voltage of a control area. However, exact control of a single pilot point is difficult because of the influence of adjacent areas in a meshed power system. To address this challenge, the proposed method accesses multiple pilot points to mitigate the effects of the neighboring area. In simulations of the Korean power system, the proposed control scheme offered a considerable improvement in performance when compared with the conventional, currently implemented voltage control system.

2018 ◽  
Vol 30 (4) ◽  
pp. 14-31 ◽  
Author(s):  
Suyel Namasudra ◽  
Pinki Roy

This article describes how nowadays, cloud computing is one of the advanced areas of Information Technology (IT) sector. Since there are many hackers and malicious users on the internet, it is very important to secure the confidentiality of data in the cloud environment. In recent years, access control has emerged as a challenging issue of cloud computing. Access control method allows data accessing of an authorized user. Existing access control schemes mainly focus on the confidentiality of the data storage. In this article, a novel access control scheme has been proposed for efficient data accessing. The proposed scheme allows reducing the searching cost and accessing time, while providing the data to the user. It also maintains the security of the user's confidential data.


2017 ◽  
Vol 40 (11) ◽  
pp. 3345-3357 ◽  
Author(s):  
Zhenxing Sun ◽  
Shihua Li ◽  
Jiegao Wang ◽  
Xinghua Zhang ◽  
Xiaohui Mo

With the development of digital signal processes, the relative differences of PMSM single loop in control periods between the speed loop and current loops are becoming smaller or even vanishing. Therefore, cascade control schemes seem to be unnecessary. In addition, considering the effects of disturbances and the variety of moments of inertia, this paper proposes a scheme using an adaptive non-cascade control method to design the controller, which merges speed loop and q-axis current loop into one single loop. First, an extended state observer (ESO) is employed to estimate the disturbances of the system. The estimated value is used in the feedforward compensation design to improve the capability of system anti-disturbance. Then, considering the performance degradation caused by inertia change, an adaptive control scheme is developed. By using inertia identification technology, the feedforward compensation gain can be tuned automatically according to the identification value. Several groups of simulations and experiments are carried out and the results demonstrate the effectiveness of the proposed scheme.


2021 ◽  
Vol 141 (7) ◽  
pp. 520-527
Author(s):  
Naoto Yorino ◽  
Naoki Inoue ◽  
Tappei Miyakoda ◽  
Yutaka Sasaki ◽  
Yoshifumi Zoka ◽  
...  

2019 ◽  
Vol 29 (10) ◽  
pp. 1950130 ◽  
Author(s):  
Jiangbin Wang ◽  
Ling Liu ◽  
Chongxin Liu ◽  
Jian Liu

Differing from the existing literature that only focus on controlling some simple chaotic power system models, this paper aims to control chaotic oscillations in complex seven-dimensional power system model. First, based on fixed-time stability theory, a novel fixed-time synergetic controller is proposed to make its macro variable enter into an invariant manifold within a fixed-time upper bound by a constant, depending only on control parameters that can be changed by the designer and calculated theoretically. The presented controller can eliminate chattering and achieve exact convergence of the macro variable. Then, the proposed control method is applied to suppress chaos in the seven-dimensional power system model. Based on the important idea that chaotic oscillation in a power system is caused by its excess energy, a model of energy storage device controller is employed in the controller design process to absorb active power from the entire controlled system. Finally, several simulation examples are given to confirm the effectiveness, the superiority and the robustness of the proposed control scheme. Compared with the existing literature, a relatively general method of suppressing chaotic oscillations in power systems is developed.


2018 ◽  
Vol 10 (9) ◽  
pp. 3240 ◽  
Author(s):  
Santoso Wibowo ◽  
Srimannarayana Grandhi

This paper presented a multicriteria assessment model for evaluating the performance of combined heat and power systems. Interval-valued intuitionistic fuzzy numbers were used for representing the subjective and imprecise assessments of the decision maker in evaluating the relative importance of the criteria, and the performance of individual combined heat and power systems. An effective algorithm was developed based on the concept of ideal solutions for calculating the overall performance index, for each combined heat and power system across all criteria. An example was presented to demonstrate the applicability of the multicriteria assessment model, for dealing with real world combined heat and power system performance evaluation problems.


Author(s):  
Hanuman P. Agrawal ◽  
Hariom Bansal

Background: The power industry has been evolving continuously and influenced by a competitive deregulated market. The crucial demand to maximize the efficiency of the existing equipment requires it’s proper management. Flexible AC Transmission System (FACTS) are flexible devices, which provide dynamic control over the power system to cope with its dynamic nature. Methods: An extensive review is carried out on FACT devices covering its classification, importance, optimal placement and influence on the power systems. Results: In this paper, different techniques to identify the optimal location of placing FACT devices have been discussed and compared, as the placement of these devices in the power system is of utmost importance for its efficiency. Conclusion: This paper summarizes techniques available for optimal placement of FACTS devices in order to improve power system performance. It will serve as a ready reference for the future researchers in this field and help them in selecting the proper devices to carry out their work.


Author(s):  
Y. Wan

Abstract In this paper, a new control scheme is proposed to achieve stability for a single-machine infinite-bus power system. A power system model simultaneously considering input saturation and time-varying uncertainties is presented. A sufficient condition for the system convergence is given and based on this result, a switching excitation control law with auxiliary system is designed. The stability analysis and simulation results all show that the developed controller is effective.


Sign in / Sign up

Export Citation Format

Share Document