scholarly journals Predicting Energy Generation Using Forecasting Techniques in Catalan Reservoirs

Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1832 ◽  
Author(s):  
Raúl Parada ◽  
Jordi Font ◽  
Jordi Casas-Roma

Reservoirs are natural or artificial lakes used as a source of water supply for society daily applications. In addition, hydroelectric power plants produce electricity while water flows through the reservoir. However, reservoirs are limited natural resources since water levels vary according to annual rainfalls and other natural events, and consequently, the energy generation. Therefore, forecasting techniques are helpful to predict water level, and thus, electricity production. This paper examines state-of-the-art methods to predict the water level in Catalan reservoirs comparing two approaches: using the water level uniquely, uni-variant; and adding meteorological data, multi-variant. With respect to relating works, our contribution includes a longer times series prediction keeping a high precision. The results return that combining Support Vector Machine and the multi-variant approach provides the highest precision with an R 2 value of 0.99.

Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1983
Author(s):  
Renato Buljan ◽  
Krešimir Pavlić ◽  
Josip Terzić ◽  
Dario Perković

The investigation area is located in the world-famous Dinaric karst. This study presents a conceptual model of groundwater dynamics and its interaction with surface waters, extending from the natural water retention of the Drežničko Polje to the spring zone on the far side of the Kapela Mountain range, including a description of the regional groundwater flow in the Zagorska Mrežnica spring zone. The aim of this research was to determine the possibility of an artificial enlargement of the natural retention of this karst field. Large amounts of water could be exploited in this way for the existing hydroelectric power plants of Gojak and Lešće on the Donja Dobra River. The prolonged retention of the water wave in the Drežničko Polje would extend its efficiency in regards to the production of electrical energy, and simultaneously achieve the mitigation of floods that frequently occur in the broader area of Ogulin. Photogeological analysis of the area was performed, together with geological and hydrogeological mapping, groundwater tracing, measurements of water flows in streams and springs, exploratory drilling and measurements of water levels in 26 piezometric boreholes in the Drežničko Polje. Available meteorological data from nearby weather stations (Jasenak, Drežnica and Modruš) were exploited, as well as hydrological data collected specifically for the modelling of runoff. Based on the results of the data processing, this study has determined: (1) the dynamics of the groundwater flow from the Drežničko Polje to the spring area of the Zagorska Mrežnica, (2) the dynamics of recharge and discharge of the natural retention of the Drežničko Polje; and (3) an improved interpretation of the Zagorska Mrežnica karst spring dynamics. The obtained results of groundwater flow dynamics indicate typical karst flow conditions in the Dinaric Karst, but also contain some specific features.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5605 ◽  
Author(s):  
Matteo Fermeglia ◽  
Paolo Bevilacqua ◽  
Claudia Cafaro ◽  
Paolo Ceci ◽  
Antonio Fardelli

This contribution aims to provide an in-depth outlook of the phase-out of coal-fired energy generation in Italy. In particular, this article analyzes the state-of-the-art with regard to both the current role of coal generation and the performance of the main legal and regulatory tools as implemented in Italy thus far to ensure the closure of all coal power plants by 2025 as announced in the Italian National Climate and Energy Plan. Based on existing data and scenarios on both electricity production and demand trends, this article unfolds the marginal role played by coal-fired generation in the Italian energy mix. In addition, this paper aims to highlight the outstanding technical uncertainties and regulatory hurdles in the way towards de-carbonization of energy generation in Italy. This paper argues that several remarkable improvements are needed in order to avoid over-generation (especially through natural gas), to upscale the penetration of renewable energy sources, and develop the necessary infrastructures to adequately deliver on the full phasing-out of coal within the expected timeframes.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Alice Coburn ◽  
Eilín Walsh ◽  
Patrick J. Solan ◽  
Kevin P. McDonnell

Ireland has one of the highest wind energy potentials in Europe. The intermittent nature of wind makes this renewable resource impractical as a sole source of energy. Combining wind energy with pumped hydro energy storage (PHES) can overcome this intermittency, consuming energy during low-demand periods and supplying energy for periods of high demand. Currently Ireland has a number of hydroelectric power plants and wind farms of various scales in operation. A feasibility study was conducted to investigate the potential of securing a reliable source of renewable energy by increasing the penetration of hydroelectric power by means of combined wind-PHES developments. The greatest wind potential is experienced along the western coast of Ireland and a number of sites were identified here which satisfied a minimum mean wind speed criterion of 10.5 ms−1. Each site was then further evaluated according to topographical requirements for PHES. All but two of the identified sites are immediately unsuitable due to the presence of areas protected under European legislation; this highlights the nonenergy related obstacles in the path of renewable energy generation in Ireland and suggests that a compromise should be researched which could facilitate both renewable energy generation and species and habitat protection in Europe.


2021 ◽  
Vol 2094 (2) ◽  
pp. 022061
Author(s):  
Ya V Grebnev ◽  
A K Moskalev ◽  
D I Shagidulina

Abstract Every year, there are many floods on the planet, which have a significant impact on ensuring the safety of people and affects the quality of life. The development of modern modelling technologies makes it possible to predict various scenarios for the development of the situation and reduce the likelihood of negative consequences. This issue is especially relevant for settlements located in the immediate vicinity of hydroelectric power plants, since by regulating discharge costs from hydroelectric power plants, it is possible to safely pass flood waters avoiding flooding of residential buildings and infrastructure, but this requires knowing the flooding zones at different water levels and discharge costs. This paper presents the results of solving the problem of modelling the dynamics of flood waters within the boundaries of the settlement of Krasnoyarsk. To calculate the flooded areas, the TUFLOW program was used in the Surface-water Modelling System modelling environment, as well as neural network forecasting using the NeuroPro software product. The simulation results made it possible to predict local flooding of the settlement during the flood of 2021 and take preventive measures to reduce the risk of flooding.


2012 ◽  
Vol 1 (33) ◽  
pp. 53
Author(s):  
Leigh MacPherson ◽  
Ivan David Haigh ◽  
Matthew Mason ◽  
Sarath Wijeratne ◽  
Charitha Pattiaratchi ◽  
...  

The potential impacts of extreme water level events on our coasts are increasing as populations grow and sea levels rise. To better prepare for the future, coastal engineers and managers need accurate estimates of average exceedance probabilities for extreme water levels. In this paper, we estimate present day probabilities of extreme water levels around the entire coastline of Australia. Tides and storm surges generated by extra-tropical storms were included by creating a 61-year (1949-2009) hindcast of water levels using a high resolution depth averaged hydrodynamic model driven with meteorological data from a global reanalysis. Tropical cyclone-induced surges were included through numerical modelling of a database of synthetic tropical cyclones equivalent to 10,000 years of cyclone activity around Australia. Predicted water level data was analysed using extreme value theory to construct return period curves for both the water level hindcast and synthetic tropical cyclone modelling. These return period curves were then combined by taking the highest water level at each return period.


2016 ◽  
Vol 47 (S1) ◽  
pp. 69-83 ◽  
Author(s):  
Bing Li ◽  
Guishan Yang ◽  
Rongrong Wan ◽  
Xue Dai ◽  
Yanhui Zhang

Modeling of hydrological time series is essential for sustainable development and management of lake water resources. This study aims to develop an efficient model for forecasting lake water level variations, exemplified by the Poyang Lake (China) case study. A random forests (RF) model was first applied and compared with artificial neural networks, support vector regression, and a linear model. Three scenarios were adopted to investigate the effect of time lag and previous water levels as model inputs for real-time forecasting. Variable importance was then analyzed to evaluate the influence of each predictor for water level variations. Results indicated that the RF model exhibits the best performance for daily forecasting in terms of root mean square error (RMSE) and coefficient of determination (R2). Moreover, the highest accuracy was achieved using discharge series at 4-day-ahead and the average water level over the previous week as model inputs, with an average RMSE of 0.25 m for five stations within the lake. In addition, the previous water level was the most efficient predictor for water level forecasting, followed by discharge from the Yangtze River. Based on the performance of the soft computing methods, RF can be calibrated to provide information or simulation scenarios for water management and decision-making.


2017 ◽  
Vol 64 (1) ◽  
pp. 37-47 ◽  
Author(s):  
Krzysztof Brusewicz ◽  
Witold Sterpejkowicz-Wersocki ◽  
Robert Jankowski

AbstractWith the increase in water retention needs and planned river regulation, it might be important to investigate the dynamic resistance of vulnerable elements of hydroelectric power plants, including steelwater locks. The most frequent dynamic loads affecting hydroengineering structures in Poland include vibrations caused by heavy road and railway traffic, piling works and mining tremors. More destructive dynamic loads, including earthquakes, may also occur in our country, although their incidence is relatively low. However, given the unpredictable nature of such events, as well as serious consequences they might cause, the study of the seismic resistance of the steel water gate, as one of the most vulnerable elements of a hydroelectric power plant, seems to be important. In this study, a steel radial gate has been analyzed. As far as water gates are concerned, it is among the most popular solutions because of its relatively small weight, compared to plain gates. A modal analysis of the steel radial gate was conducted with the use of the FEM in the ABAQUS software. All structural members were modelled using shell elements with detailed geometry representing a real structure.Water was modelled as an added mass affecting the structure. Different water levels were used to determine the most vulnerable state of the working steel water gate. The results of the modal analysis allowed us to compare the frequencies and their eigenmodes in response to different loads, which is one of the first steps in researching the dynamic properties of steel water gates and their behaviour during extreme dynamic loads, including earthquakes.


2018 ◽  
Vol 8 (3) ◽  
pp. 81
Author(s):  
Secil Satir ◽  
Yildirim B. Kestane ◽  
Sertan Dogru

Abstract--The matter is considered in the scope of sustainability and initially the basis and content of the term is defined. Based on this definition, the qualities of water and water energy are inspected as water is one of the most important type of clean energy source. Water energy is a time-honored renewable energy whose use dates back to earliest periods in history. The subject titled “A Generator” is a small but significant support to environmental protection as it defines a patented object which generates energy from water with a mini apparatus. Protection of future lives of creatures and keeping them in infinite existence necessitate taking measures in advance. Concepts such as environment protection, sustainability, green energy, green economy etc. have also been under consideration by the UN since the 1970s. The subject is very comprehensive. This paper inspects as required hydroelectric power plants which produce clean energy and date back to ancient times. Water, as main source of hydroelectric power plants, is collected in proper basins and thus provided with potential energy. Water is then dropped from heights to trigger its kinetic energy and canalized to turbine wheels, moving which it turns kinetic/mechanical energy into electric power. This basic characteristic of water is evaluated in a mini apparatus this time. And an apparatus of unaccustomed size is obtained, which could support electricity production in household wet areas.


Sign in / Sign up

Export Citation Format

Share Document