scholarly journals Modelling Energy Consumption and Energy-Saving in High-Quality Olive Oil Decanter Centrifuge: Numerical Study and Experimental Validation

Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2592 ◽  
Author(s):  
Antonia Tamborrino ◽  
Claudio Perone ◽  
Filippo Catalano ◽  
Giacomo Squeo ◽  
Francesco Caponio ◽  
...  

In this study, an energy consumption model of a decanter centrifuge was proposed, in particular for a technologically evolved machine equipped with an electromechanical recovery system. This model should be suitably coupled with an auto-adaptive controlling technique used to accurately manage the olive oil process. To achieve this goal, a solid physical and theoretical basis that simple to implement is required. To date there have only been limited scientific studies modelling energy consumption applied to the machines used in olive oil extraction processes. Therefore, the model was developed using fluid dynamic analysis and physical constraints to give it a solid basis. It was then simplified sufficiently for future implementation in automatic machine systems. The empirical model was validated through power measurements conducted in two harvesting seasons under varying operating conditions. The model estimates the power absorbed by the bowl and that produced and recovered by the screw, with high accuracy in each harvesting season. When considering the two harvesting seasons as a single season, the prediction accuracy remains considerable, despite a marginal increase in errors (correlation coefficient greater than 0.90). Finally, the model indicates that the screw conveyor speed is the most important parameter to achieve the desired energy recovery level, while the differential speed, which is a process parameter, has only a negligible impact on energy saving.

2013 ◽  
Vol 44 (2s) ◽  
Author(s):  
Biagio Bianchi ◽  
Antonia Tamborrino ◽  
Francesco Santoro

The third era in olive oil extraction sees a new generation of decanter that give the operator the possibility to chose time by time the type of working: two or three phase shifting from one solution to the other without stopping the machine and even intermediate solutions between two or three phase, making the most suitable adjustments, following olive variety, just as the machine works. A decanter centrifuge was employed during the experimental tests with variable differential speed between bowl and screw conveyor (􀀀n) and with regulation capability of oil-pulp ring levels. Thus permit to shift from three to two phase, reducing water added and discharging the following byproducts: dehydrated husk similar to that of three-phase and recovers a wet pulp that is the between the liquid phase and the solid phase. This paper aims to report the preliminary results of the energy and functional efficiency of the decanter when it works in the industrial scale plant and using a continuous method. The tests were carried out at two different flow rate values; for each flow rate the different variable differential speed between bowl and screw conveyor was varied at 15,50, 17,50 and 19,50. Quality olive, operating speed of the crusher machine and relative feed flow rate of the machine, the malaxing time and the degree of dilution of the paste, as well as the oil-pulp ring level were the same for all the trials. Irrespective of the flow rate and 􀀀n used, the machine tends to stabilize energy consumption in a very short time and values were quite similar to each other. The reductions in flow rate do not involve reductions of energy consumption indeed lead to the increase of absorption per unit mass of product worked. For all thesis studied, no significant changes of the oil recovery efficiency were found, indeed changing the flow rate and the 􀀀n a different distribution of the not extracted oil was found in the pulp and in the husk. To complete the knowledge, a set of tests changing also the oil-pulp ring levels, has been provided for the next olive oil season.


Author(s):  
Giorgia Baccino ◽  
Sara Cosentino ◽  
Elisa Guelpa ◽  
Adriano Sciacovelli ◽  
Vittorio Verda

One of the possible options for increasing the primary energy efficiency in district heating networks (DHNs) consists in flattening the thermal load diagram of the plants. This can be obtained through thermal storage. Storage generally allows one to increase the percentage of heat produced through CHP plants, waste heat or renewable systems. In this work, a numerical approach to analyze possible effects of distributed storage on the primary energy consumption is presented. This is based on the availability of detailed information about the thermal substations that connect the users to the DHN and a thermo-fluid dynamic model of the network. First, the analysis of a user of the district heating network is proposed in order to show the operating conditions of the heat exchanger in the thermal substation. Then the model of the network is presented and an application is proposed. This application allows us to discuss how the thermal request of a user modifies along the network because of the heat capacity of the network itself and mixing with the mass flow rates at different temperatures. Therefore, the thermal load that the plants should fulfill is different than the simple summation of the thermal request of the users. This tool allows one to link the thermal thermal request of the users to the thermal load of the plant and thus to the global primary energy consumption. It can be then applied to the evaluation of possible variation of thermal request profile of the users.


Author(s):  
A. J. Sanders ◽  
K. K. Hassan ◽  
D. C. Rabe

Experiments are performed on a modern design transonic shroudless low-aspect ratio fan blisk that experienced both subsonic/transonic and supersonic stall-side flutter. High-response flush mounted miniature pressure transducers are utilized to measure the unsteady aerodynamic loading distribution in the tip region of the fan for both flutter regimes, with strain gages utilized to measure the vibratory response at incipient and deep flutter operating conditions. Numerical simulations are performed and compared with the benchmark data using an unsteady three-dimensional nonlinear viscous computational fluid dynamic (CFD) analysis, with the effects of tip clearance, vibration amplitude, and the number of time steps-per-cycle investigated. The benchmark data are used to guide the validation of the code and establish best practices that ensure accurate flutter predictions.


2021 ◽  
pp. 9-19
Author(s):  
VALERII DESHKO ◽  
INNA BILOUS ◽  
IRYNA SUKHODUB ◽  
TETYANA BOIKO

Target. To analyze the features of energy consumption of the building of the educational building No. 17 of the National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" in the conditions of quarantine restrictions in the implementation of energy-saving heating schemes.Methodology. Dynamic energetic modeling of a university academic building created in the DesignBuilder software environment under normal and quarantine modes.Results. Recommendations for the implementation of energy-saving modes of heating the building of the academic building of the university during the period of distance learning when introducing quarantine restrictions in Ukraine.Scientific novelty. An integrated approach has been developed to an in-depth analysis of energy consumption under conditions of partial use of the premises of educational buildings during the quarantine period. It is substantiated that the use of premises with partial operation of the building requires additional unit costs for heating needs.Practical significance. Simulation dynamic modeling of the building's energy consumption for heating for various modes of operation and employment / use of premises of educational buildings during the quarantine period in Ukraine, the results of the study will allow to obtain a set of energy characteristics of the building as a whole and its individual rooms / zones for hourly changes in internal operating conditions and external climatic conditions. The use of the proposed scheme of operation of the heating system of the building of the educational building allows to reduce energy consumption during the heating period by 8,5% compared to energy consumption during normal operation, which is economically feasible in conditions of partial occupancy of the building during quarantine restrictions (during lockdown) and an unpredictable macroeconomic situation on the energy market, causing a trend towards an increase in prices for basic energy resources.


2015 ◽  
Vol 137 (6) ◽  
Author(s):  
Qingang Xiong ◽  
Soroush Aramideh ◽  
Alberto Passalacqua ◽  
Song-Charng Kong

A numerical study of the effects of the shape of an enclosed screw conveyor on the mixing and heat transfer in a horizontal gas–solid fluidized bed was conducted using computational fluid dynamics (CFD). A two-fluid model (TFM) was employed to model the gas and solid phases as continua through mass, momentum, and energy conservations. The motion of the screw conveyor was simulated by using a rotating reference frame (RRF) such that the computational mesh was free from dynamic reconstruction. The diameters of the screw flight and shaft, the pitch, and the blade thickness were varied in the parametric study. Under the operating conditions studied, it was found that the increase in the diameter of the screw flight results in the enhancement of the solid mixing and conveyance. The increase in the diameters of the screw shaft and the screw blade thickness lead to the enhanced solid mixing but reduced conveyance. The variation in the screw pitch gives rise to rather complex behaviors in the solid mixing and conveyance. As the screw pitch is decreased, the solid mixing increases initially but then decreases before it increases eventually. The solid conveyance capability was found to first increase and then decrease. Explanations to the effects of the shape of the screw conveyor were discussed in this work.


Resources ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 43 ◽  
Author(s):  
Nena Apostolidou ◽  
Nick Papanikolaou

In this work, the electromechanical system of the 8000-series of Athens trolleybuses, based on data provided by OSY S.A., is analyzed. Those data were used to develop a valid model in order to estimate the total energy consumption of the vehicle under any possible operating conditions. In addition, an effort is made to estimate the energy saving potential if the wasted energy—in the form of heat—during braking or downhill courses is recovered (regenerative braking) and retrofitted during normal operation. This process requires the installation of appropriate electrical apparatus to recover and temporarily store this energy amount. Moreover, due to the fact that the main engine of the system is an asynchronous electric machine, its driving scheme is also of interest. This study assumes the current driving scheme, that is the direct vector control (DVC), and proposes an alternative control method, the direct torque control (DTC). Energy consumption/saving calculations highlight the effectiveness of incorporating regenerative braking infrastructure in trolleybuses transportation systems. Finally, a sustainable hybrid energy storage unit that supports regenerative braking is proposed.


Author(s):  
Bok Seong Choe ◽  
Jeon Kook Lee ◽  
Doyoung Jeon ◽  
Yongbok Lee

This study presents the dynamic motion of a ball bearing cage submerged in a cryogenic fluid under high-speed conditions. The dynamic motion of the cage has been studied as a function of the race land–cage and ball–cage pocket clearances for different inner race rotation speeds under light load conditions. In addition, this study conducted computational fluid dynamics (CFD) analysis using commercial software to analyze the fluid dynamic forces on the cage. The hydraulic force obtained from the CFD analysis was coded in commercial ball bearing analysis software as a function of the eccentricity ratio and rotation speed of the cage. Finally, the dynamic motion of the ball bearing cage considering the effects of fluid dynamic forces has been studied. The results include the cage whirling amplitude, fluctuation of cage whirling speed, and cage wear for various cage clearances and rotation speeds. The cage outer guidance clearances studied were 1.14, 1.04, 0.94, 0.84, and 0.74 mm and the ball–pocket clearances were 0.62, 0.92, 1.22, 1.52, and 1.82 mm. The rotation speeds of the inner race were 5,000, 8,000, and 11,000 rpm. The cage whirling amplitude decreases as the outer guidance clearance decreases, and it decreases as the rotation speed increases up to 11,000 rpm because of the increasing hydrodynamic force of the liquid nitrogen (LN2). However, the probability density function (PDF) curves indicate that an increase in the rotor speed increases the standard deviation in the cage whirling frequency. The wear loss of the cage was greatest for the largest race land–cage and the smallest ball–cage pocket clearances, owing to the increased number of intermittent collisions between the cage and the ball bearings (ball–race). Consequently, the analysis results for various operating conditions (inner race rotation speeds, cage clearances, traction coefficients, etc.) are in good agreement with the reference results.


Author(s):  
Michele Battistoni ◽  
Carlo N. Grimaldi ◽  
Francesco Mariani

In SI engines, VVA (Variable Valve Actuation) technology is mainly used for the reduction of pumping losses at part load. This paper presents the results of fluid dynamic analyses on a 4V engine about the effects of different VVA strategies, by comparing and discussing the results in terms of organized charge motions, turbulence levels, flame developments, NO and CO emissions. CFD simulations cover five load control cases: comparison is among conventional throttling, EIVC (Early Intake Valve Closure) with symmetric and asymmetric intake lifts, LIVC (Late Intake Valve Closure) and symmetrical Multi-Lift strategies. 3D U-RANS simulations are performed, adopting the Extended Coherent Flamelet Model (ECFM) for the description of premixed SI combustion. The 3D model is also coupled to a 1D engine model which provides inlet/outlet boundary conditions. Simulation results highlight the potential of asymmetric Early Intake Valve Closure (EIVC) strategy which allows reducing pumping losses and, at the same time, achieving good turbulence intensity and combustion speed, if compared to other load control strategies. Multi-Lift strategy resulted excellent in terms of burn duration, but pumping losses are practically the same as in the throttled engine.


2004 ◽  
Vol 126 (1) ◽  
pp. 166-174 ◽  
Author(s):  
A. J. Sanders ◽  
K. K. Hassan ◽  
D. C. Rabe

Experiments are performed on a modern design transonic shroudless low-aspect ratio fan blisk that experienced both subsonic/transonic and supersonic stall-side flutter. High-response flush mounted miniature pressure transducers are utilized to measure the unsteady aerodynamic loading distribution in the tip region of the fan for both flutter regimes, with strain gages utilized to measure the vibratory response at incipient and deep flutter operating conditions. Numerical simulations are performed and compared with the benchmark data using an unsteady three-dimensional nonlinear viscous computational fluid dynamic (CFD) analysis, with the effects of tip clearance, vibration amplitude, and the number of time steps-per-cycle investigated. The benchmark data are used to guide the validation of the code and establish best practices that ensure accurate flutter predictions.


2021 ◽  
Vol 321 ◽  
pp. 01010
Author(s):  
Lila Achour ◽  
Mathieu Specklin ◽  
Idir Belaidi ◽  
Smaine Kouidri

The performance and hydrodynamic behavior of centrifugal pumps when handling two-phase liquid-liquid flow and emulsion remain relatively unexplored, although they are of fundamental importance in optimizing the operating conditions of these pumps. Hence, this study aims at investigating the performance degradation of a centrifugal pump under emulsion flow by combined means of analytical and computational fluid dynamic (CFD) models. The analytical approach is based on internal energy loss equations while the CFD approach models the emulsion as a continuous and homogeneous single-phase fluid exhibiting shear thinning behavior. The results give a good insight into the performance degradation of such a system, especially at the best efficiency point (BEP).


Sign in / Sign up

Export Citation Format

Share Document