scholarly journals Study on the Influence of Temperature, Moisture and Electric Field on the Electrical Conductivity of Oil-Impregnated Pressboard

Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3136 ◽  
Author(s):  
Yuan Li ◽  
Kai Zhou ◽  
Guangya Zhu ◽  
Mingzhi Li ◽  
Shiyu Li ◽  
...  

The main insulation of converter transformers consists of transformer oil and oil-impregnated pressboard. Under operating conditions, the valve-side winding of the converter transformer is subject to DC voltage components. Therefore, studies on the characteristics of oil-impregnated pressboard conductivity are necessary. In this paper, the temperature, moisture and electric field dependency of pressboard conductivity are investigated based on a specially designed three-electrode experimental chamber, which allows for a variation in temperature ranging from 25 °C to 120 °C and an electric field strength ranging from 0 to 30 kV/mm. The experimental results show that, within the experimental conditions, the conductivity of oil-impregnated pressboard increases exponentially with increasing moisture and temperature. High moisture and temperature will increase both the carrier concentration and carrier mobility, which explains the exponential correspondence. Furthermore, the electric field dependency of the conductivity is more obvious for wet pressboard than for dry pressboard. Protons in the wet pressboard are more easily accelerated by the electric field than the impurity ions in the oil of the dry pressboard, which leads to an obvious electric field dependency of the wet pressboard conductivity.

Due to special operating conditions, the valve side bushing of the converter transformer connected to the converter valve is subject to complex voltage excitation, including DC voltage, AC/DC composite voltage, lightning impulse overvoltage, or composite voltage of operating overvoltage and DC. Under the action of this complicated electric field, the oil-paper insulation of the valve-side bushing of the converter transformer is prone to electric field distortion due to charge accumulation, which causes a surface discharge, which will seriously cause the edge breakdown. At the same time, since the temperature in the converter transformer rises due to a large amount of loss during the operation of the transformer, creeping discharge is more likely to occur under the electrothermal composite field. Hence, it is significant to carry out research on the surface discharge characteristics of the oil-paper insulation on the valve side of the converter transformer under the electrothermal composite field.


2019 ◽  
Vol 114 ◽  
pp. 04005
Author(s):  
Ngo Van Cuong ◽  
Lidiia I. Kovernikova

The parameters of electrical network modes often do not meet the requirements of Russian GOST 32144-2013 and the guidelines of Vietnam. In the actual operating conditions while there is the non-sinusoidal mode in electrical networks voltage and current harmonics are present. Harmonics result in overheating and damage of power transformers since they cause additional active power losses. Additional losses lead to the additional heat release, accelerating the process of insulating paper, transformer oil and magnetic structure deterioration consequently shortening the service life of a power transformer. In this regard there arises a need to develop certain scientific methods that would help demonstrate that low power quality, for instance could lead to a decrease in the electrical equipment service life. Currently we see a development of automated systems for continuous monitoring of power quality indices and mode parameters of electrical networks. These systems could be supplemented by characteristics calculating programs that give out a warning upon detection of the adverse influence of voltage and current harmonics on various electrical equipment of both electric power providers and electric power consumers. A software program presented in the article may be used to predict the influence of voltage and current harmonics on power transformers.


Author(s):  
Laslo Šereš ◽  
Ljubica Dokić ◽  
Bojana Ikonić ◽  
Dragana Šoronja-Simović ◽  
Miljana Djordjević ◽  
...  

Cross-flow microfiltration using ceramic tubular membrane was applied for treatment of steepwater from corn starch industry. Experiments are conducted according to the faced centered central composite design at three different transmembrane pressures (1, 2 and 3 bar) and cross-flow velocities (100, 150 and 200 L/h) with and without the usage of Kenics static mixer. For examination of the influence of the selected operating conditions at which usage of the static mixer is justified, a response surface methodology and desirability function approach were used. Obtained results showed improvement in the average permeate flux by using Kenics static mixer for 211 % to 269 % depending on experimental conditions when compared to the system without the static mixer. As a result of optimization, the best results considering flux improvement as well as reduction of specific energy consumption were obtained at low transmembrane pressure and lower feed cross-flow rates.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Christoph A. Schmalhofer ◽  
Peter Griebel ◽  
Manfred Aigner

The use of highly reactive hydrogen-rich fuels in lean premixed combustion systems strongly affects the operability of stationary gas turbines (GT) resulting in higher autoignition and flashback risks. The present study investigates the autoignition behavior and ignition kernel evolution of hydrogen–nitrogen fuel mixtures in an inline co-flow injector configuration at relevant reheat combustor operating conditions. High-speed luminosity and particle image velocimetry (PIV) measurements in an optically accessible reheat combustor are employed. Autoignition and flame stabilization limits strongly depend on temperatures of vitiated air and carrier preheating. Higher hydrogen content significantly promotes the formation and development of different types of autoignition kernels: More autoignition kernels evolve with higher hydrogen content showing the promoting effect of equivalence ratio on local ignition events. Autoignition kernels develop downstream a certain distance from the injector, indicating the influence of ignition delay on kernel development. The development of autoignition kernels is linked to the shear layer development derived from global experimental conditions.


Author(s):  
Zhengwei Ge ◽  
Chun Yang

Microfluidic concentration of sample species is achieved using the temperature gradient focusing (TGF) in a microchannel with a step change in the cross-section under a pure direct current (DC) field or a combined alternating current (AC) and DC electric field. Experiments were carried out to study the effects of applied voltage, buffer concentration and channel size on sample concentration in the TGF processes. These effects were analyzed and summarized using a dimensionless Joule number that is introduced in this study. In addition, Joule number effect in the Poly-dimethylsiloxane (PDMS)/PDMS microdevice was compared with the PDMS/Glass microdevice. A more than 450-fold concentration enhancement was obtained within 75 seconds in the PDMS/PDMS microdevice. Results also showed that the high frequency AC electric field which contributes to produce the temperature gradient and reduces the required DC voltage for the sample concentration. The lower DC voltage has generated slower electroosmotic flow (EOF), which reduces the backpressure effect associated with the finite reservoir size. Finally, a more than 2500-fold concentration enhancement was obtained within 14 minutes in the PDMS/PDMS microdevice, which was a great achievement in this TGF technique using inherent Joule heating effects.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2271 ◽  
Author(s):  
Qingguo Chen ◽  
Jinfeng Zhang ◽  
Minghe Chi ◽  
Peng Tan ◽  
Wenxin Sun

The electric field distortion caused by space charge is an important factor affecting the operation reliability of oil–paper insulation in a converter transformer. To study the accumulation and decay characteristics of the space charge within oil-impregnated pressboard under DC and polarity reversal voltage, and consider the possible operating conditions of the converter transformer, the space charge behavior of oil-impregnated pressboard was measured by the pulsed electro-acoustic (PEA) method in the temperature range from −20 °C to 60 °C. The effect of temperature on the accumulation and decay characteristics of space charge is also analyzed. The space charge accumulated within the pressboard at low temperature is mainly homocharge injected by the electrode, while heterocharge formed by ion dissociation counteracts some of the homocharge at high temperature. Thus, the space charge of pressboard first increases, then decreases, with an increase in temperature. However, slow decay of the space charge causes severe distortion of the electric field distribution in the pressboard during voltage polarity reversal.


Author(s):  
C-W. Hustad ◽  
A. Bölcs ◽  
M. Wehner

Calculated results for tip flow around two different blade configurations are presented and compared with experimental data. The first configuration (case number 1) is a flat-plate profile tested in a linear transonic tunnel — the profile is an idealized representation of the aft-section of some highly curved turbine blades. The second configuration (case number 2) originates from the outer profile on the last-stage-blade of a steam turbine, however it is also reminiscient of a section from a turbine blade with supersonic exit flow. This configuration was tested in an annular cascade at Mach numbers representative of engine operating conditions. The computed results were obtained using a parallel 3D unstructured Navier-Stokes code. The code runs on a work-station cluster, as well as being optimized for the 256 processor Cray T3D at EPFL: the code is capable of gigaflop performance using more than 3 million cells — adaptive mesh refinement thus allows enhanced resolution within the tip gap region. For each configuration we have calculated two Runs. In both cases, Run-1 is similar to the experimental conditions, so that direct comparison between measured and calculated results is possible. With case number 1/Run-2 we re-calculated the flow without imposing a prescribed inflow boundary-layer along the sidewall. Comparison between the two runs helped reveal how free-stream total pressure can establish itself within the tip gap region. For the second configuration — in the annular cascade — we were interested in observing the influence of relative movement between the blade tip and adjacent sidewall. Hence for case number 2/Run-2 we imposed a circumferential velocity on the adjacent sidewall. This modified the effective sidewall boundary-layer and had a noticeable influence on the development of the tip-leakage flow.


2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Chinedum Peter Ezeakacha ◽  
Saeed Salehi

Drilling mud loss in highly porous media and fractured formations has been one of the industry's focuses in the past decades. Wellbore dynamics and lithology complexities continue to push for more research into accurate quantification and mitigation strategies for lost circulation and mud filtration. Conventional methods of characterizing mud loss with filtration data for field application can be time-consuming, particularly because of the interaction between several factors that impact mud loss and filtration. This paper presents a holistic engineering approach for characterizing lost circulation using pore-scale dynamic water-based mud (WBM) filtration data. The approaches used in this study include: factorial design of experiment (DoE), hypothesis testing, analysis of variance (ANOVA), and multiple regression analysis. The results show that an increase in temperature and rotary speed can increase dynamic mud filtration significantly. An increase in lost circulation material (LCM) concentration showed a significant decrease dynamic mud filtration. A combination of LCM concentration and rotary speed showed a significant decrease in dynamic mud filtration, while a combination of LCM concentration and temperature revealed a significant increase in dynamic mud filtration. Rotary speed and temperature combination showed an increase in dynamic mud filtration. The combined effect of these three factors was not significant in increasing or decreasing dynamic mud filtration. For the experimental conditions in this study, the regression analysis for one of the rocks showed that dynamic mud filtration can be predicted from changes in LCM concentration and rotary speed. The results and approach from this study can provide reliable information for drilling fluids design and selecting operating conditions for field application.


2020 ◽  
Vol 22 (9) ◽  
pp. 5163-5169 ◽  
Author(s):  
Fu-Bao Zheng ◽  
Liang Zhang ◽  
Jin Zhang ◽  
Pei-ji Wang ◽  
Chang-Wen Zhang

Opening up a band gap without lowering high carrier mobility in germanene and finding suitable substrate materials to form van der Waals heterostructures have recently emerged as an intriguing way of designing a new type of electronic devices.


Sign in / Sign up

Export Citation Format

Share Document