scholarly journals CFD Simulation of an Industrial Spiral Refrigeration System

Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3358
Author(s):  
A. Khenien ◽  
A. Benattayallah ◽  
G. Tabor

In the food industry, heating and cooling are key processes where CFD can play an important role in improving quality, productivity and reducing energy costs. Cooling products after baking is crucial for storage and transportation; the product has to be cooled efficiently to a specified temperature (often to fulfill regulatory requirements) whilst preserving its quality. This study involves the analysis of spiral cooling refrigerators used in cooling food products, in this case, Cornish Pasties. Three separate sets of CFD models were developed and validated against experimental data taken in the laboratory and measurements taken in use in industry. In the first set of models a full CFD model was developed of a refrigeration spiral including the pasties, and used to study the heat transfer from the products to the air. Further simulations were carried out on individual pasties to explore the pasty cooling and heat transfer to the air in more detail, with the pasty geometry being determined from MRI scans. In the final set of simulations, Image Based Meshing (IBM) was used to determine the interior structure of the pasty and develop a full heat conduction model of the interior, which was compared with separate laboratory experiments using jets of cold air to cool the pasty. In all cases, good agreement was obtained between the CFD results and experimental data, whilst the CFD simulations provide valuable information about the air flows and cooling in the industrial system.

Author(s):  
Freddy Jeanty ◽  
Jesu´s De Andrade ◽  
Miguel Asuaje ◽  
Frank Kenyery ◽  
Auristela Va´squez ◽  
...  

Cavitation is a common phenomenon that appears during the operation of the hydraulic turbomachines reducing performance and life of Centrifugal pumps. The main goal of this work is primarily a CFD-simulation of the whole Centrifugal Pump-Turbine including the suction cone, impeller, diffuser blades and volute, in order to characterize and evaluate its performance under cavitation conditions. The CFD simulations results were compared with experimental data under cavitation and non-cavitation conditions. A good agreement has been obtained under non-cavitation conditions for global performance parameters. After the implementation of the Rayleigh Plesset cavitation model, the required Net Positive Suction Head (NPSHr) has been predicted from CFD simulations. Finally, a full cavitation test can be reproduced for a Hydraulic Turbomachine to avoid this dangerous phenomenon.


Author(s):  
A. Magi ◽  
F. Montomoli ◽  
P. Adami ◽  
C. Carcasci

Goal of this work is to define the main issues and guidelines for an accurate heat transfer CFD simulation of internal ribbed ducts. To this aim, two different ribbed ducts (AR = 1,3) have been experimentally investigated to obtain a data set useful to validate numerical analyses. Experimental HTC contour maps have been obtained using unsteady TLC technique. CFD activity deals with numerical simulation using both a commercial (Star-CD™) and an “in house” solver (HybFlow). Four different variants of the well-known two-equation turbulence models have been considered. Low cost heat transfer predictions of internal ducts are highly demanded by industry despite the uncommon complexity of modern internal coolant system. Accordingly, the main aim of the work is to provide some indications for the numerical modelling and to evaluate the accuracy level of predicted heat transfer when commercial or research packages are employed along with different grid resolution levels. Overall results are in good agreement with experimental data even if some local discrepancies are present.


2016 ◽  
Vol 16 (6) ◽  
pp. 1700-1709 ◽  
Author(s):  
Yazan Taamneh

Computational fluid dynamics (CFD) simulations were performed for experiments carried out with two identical pyramid-shaped solar stills. One was filled with Jordanian zeolite-seawater and the second was filled with seawater only. This work is focused on CFD analysis validation with experimental data conducted using a model of phase change interaction (evaporation-condensation model) inside the solar still. A volume-of-fluid (VOF) model was used to simulate the inter phase change through evaporation-condensation between zeolite-water and water vapor inside the two solar stills. The effect of the volume fraction of the zeolite particles (0 ≤ ϕ ≤ 0.05) on the heat and distillate yield inside the solar still was investigated. Based on the CFD simulation results, the hourly quantity of freshwater showed a good agreement with the corresponding experimental data. The present study has established the utility of using the VOF two phase flow model to provide a reasonable solution to the complicated inter phase mass transfer in a solar still.


2021 ◽  
Vol 2 (2) ◽  
pp. 36-43
Author(s):  
Evgeniy P. FIGURNOV ◽  
◽  
Yury I. ZHARKOV ◽  
Valeriy I. KHARCHEVNIKOV ◽  
◽  
...  

Methodology provided summarizes published, original and foreign theoretic and experimental data on the subject of heating and cooling of standard and shaped conductors of overhead power transmission line and uses those of them which are most affected to fundamental heat-transfer laws. Computation surface area of standard and shaped wire formulas are given. The common formula of convection heat transfer coefficient is provided, based on wind speed and direction, concerning antiicing mode. Parameters of this formula do not coincide with those existing, as they are based on experimental data on standard and shaped conductors but not on round tubes. Formula of computation of heat transfer power under the influence of solar radiation is given. Summarized formula of admissible continuous current computation is given, all the components have detailed description in the article.


Author(s):  
Alexander Kayne ◽  
Ramesh Agarwal

In recent years Computational Fluid Dynamics (CFD) simulations are increasingly used to model the air circulation and temperature environment inside the rooms of residential and office buildings to gain insight into the relative energy consumptions of various HVAC systems for cooling/heating for climate control and thermal comfort. This requires accurate simulation of turbulent flow and heat transfer for various types of ventilation systems using the Reynolds-Averaged Navier-Stokes (RANS) equations of fluid dynamics. Large Eddy Simulation (LES) or Direct Numerical Simulation (DNS) of Navier-Stokes equations is computationally intensive and expensive for simulations of this kind. As a result, vast majority of CFD simulations employ RANS equations in conjunction with a turbulence model. In order to assess the modeling requirements (mesh, numerical algorithm, turbulence model etc.) for accurate simulations, it is critical to validate the calculations against the experimental data. For this purpose, we use three well known benchmark validation cases, one for natural convection in 2D closed vertical cavity, second for forced convection in a 2D rectangular cavity and the third for mixed convection in a 2D square cavity. The simulations are performed on a number of meshes of different density using a number of turbulence models. It is found that k-epsilon two-equation turbulence model with a second-order algorithm on a reasonable mesh gives the best results. This information is then used to determine the modeling requirements (mesh, numerical algorithm, turbulence model etc.) for flows in 3D enclosures with different ventilation systems. In particular two cases are considered for which the experimental data is available. These cases are (1) air flow and heat transfer in a naturally ventilated room and (2) airflow and temperature distribution in an atrium. Good agreement with the experimental data and computations of other investigators is obtained.


Author(s):  
Georgii Glebovich Yankov ◽  
Vladimir Kurganov ◽  
Yury Zeigarnik ◽  
Irina Maslakova

Abstract The review of numerical studies on supercritical pressure (SCP) coolants heat transfer and hydraulic resistance in turbulent flow in vertical round tubes based on Reynolds-averaged Navier-Stokes (RANS) equations and different models for turbulent viscosity is presented. The paper is the first part of the general analysis, the works based on using algebraic turbulence models of different complexity are considered in it. The main attention is paid to Petukhov-Medvetskaya and Popov et al. models. They were developed especially for simulating heat transfer in tubes of the coolants with significantly variable properties (droplet liquids, gases, SCP fluids) under heating and cooling conditions. These predictions were verified on the entire reliable experimental data base. It is shown that in the case of turbulent flow in vertical round tubes these models make it possible predicting heat transfer and hydraulic resistance characteristics of SCP flows that agree well with the existed reliable experimental data on normal and certain modes of deteriorated heat transfer, if significant influence of buoyancy and radical flow restructuring are absent. For the more complicated cases than a flow in round vertical tubes, as well as for the case of rather strong buoyancy effect, more sophisticated prediction techniques must be applied. The state-of-the-art of these methods and the problems of their application are considered in the Part II of the analysis.


Author(s):  
Marc Thieme ◽  
Wolfgang Tietsch ◽  
Rafael Macian ◽  
Victor Hugo Sanchez Espinoza

The validation of heat transfer models of safety analysis codes such as TRACE is very important due to the strong interaction of the thermal hydraulics parameters with the core neutronics. TRACE is the reference system code of the US NRC for LWR. It is being developed and extensively validated within the international CAMP-program. In this paper, the validation of heat transfer models of TRACE related to the prediction of the critical power is presented. The validation is based on a large number of critical power tests performed in the NUPEC BFBT (BWR Full-Size Fine-Mesh Bundle Tests) facility in Japan. These tests were analysed with the TRACE Version 5 RC 2. The comparison of predictions with the experimental data shows good agreement. The developed TRACE model and the comparison of experimental data with code results will be presented and discussed.


Author(s):  
Jim S. Chen ◽  
Kevin Agnissey ◽  
Marla Wolfson ◽  
Charles Philips ◽  
Thomas Shaffer

This paper presents experimental and numerical studies of transient heat transfer inside the uterus during application of a PFC (perfluorochemical) fluid into the endometrium cavity in order to achieve cryoablation. The numerical prediction is based on a 1-D finite difference method of the bio-heat equation using the Crank Nicolson scheme. The numerical method is first validated by a 1-D physical model by measuring temperature history at several locations within a silicone rubber sheet. Good agreement, thus positive predictability, was obtained by comparing numerical predictions with the experimental data obtained from eight intact, hysterectomized uteri during cryoablation.


Author(s):  
Andrea Viano ◽  
Gabriele Ottino ◽  
Luca Ratto ◽  
Giuseppe Spataro

The heat transfer coefficient and pressure losses are among the main parameters to be evaluated in gas turbine cooling network design. Due to the complexity of these estimates, correlation-based computations are typically used as a result of time-consuming and expensive experimental activities. One of the main problems that the industry has to face is that these correlations, based on non-dimensional experimental data, produce reliable results in a range of validity typically different from that encountered in gas turbine applications. This paper will present preliminary results of an innovative procedure based on CFD analyses and Artificial Neural Networks, able to extend correlation predictions out of their range of validity, without any additional experimental data. Well-known test cases were replicated by building corresponding CAD geometries which were discretized by means of appropriate meshes, resulting from grid-independence studies. CFD analyses, based on the RANS approach, were performed to overlay the computations of the Nusselt number obtained from experimental activities. A preliminary comparison among turbulence models was carried out to find one leading to a good agreement with the experimental data. Then, an optimization method, based on Evolutionary Algorithms, was applied to the CFD analyses in order to find the best set of constant values for the chosen turbulence model, leading to the most accurate prediction of the experimental dataset. The resulting ad hoc CFD model was adopted in order to analyse test case configurations characterized by parameters within and external to the correlation validity field, building a sufficiently wide feeding database. A feed-forward multi-layer neural network was selected among network architectures typically used in engineering applications for prediction analyses. ANNs were chosen because they enable the solution of these complex nonlinear problems by using simple computational operations. The selected Artificial Neural Network was trained by a back-propagation procedure on the CFD results regarding Nusselt number. The validation of the resulting ANN was performed comparing its outputs with experimental data external to the correlation range of validity, which had not been used in the training session. Good agreement has been found. Results are presented and discussed.


1986 ◽  
Vol 108 (2) ◽  
pp. 219-224 ◽  
Author(s):  
R. Boncompain ◽  
M. Fillon ◽  
J. Frene

A general THD theory and a comparison between theoretical and experimental results are presented. The generalized Reynolds equation, the energy equation in the film, and the heat transfer equation in the bush and the shaft are solved simultaneously. The cavitation in the film, the lubricant recirculation, and the reversed flow at the inlet are taken into account. In addition, the thermoelastic deformations are also calculated in order to define the film thickness. Good agreement is found between experimental data and theoretical results which include thermoelastic displacements of both the shaft and the bush.


Sign in / Sign up

Export Citation Format

Share Document