scholarly journals Optimal Operation of Battery Storage for a Subscribed Capacity-Based Power Tariff Prosumer—A Norwegian Case Study

Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4450 ◽  
Author(s):  
Frida Berglund ◽  
Salman Zaferanlouei ◽  
Magnus Korpås ◽  
Kjetil Uhlen

The cost of peak power for end-users subject to a demand charge may be substantial, expecting to increase further with the vast growth of power-demanding devices. In cases where load-shifting is not a viable option for cost reduction, battery storage systems used for peak shaving purposes are emerging as a promising solution. In this paper, the economic benefits of implementing battery storage into an existing grid-connected photovoltaic system for a medium-scale swimming facility is studied. The objective is to minimize the total cost of electricity for the facility, including the cost of energy and peak power demand, while ensuring the longevity of the battery. An optimization model based on multi-integer linear programming is built, and simulated using a one-year time horizon in GAMS and Matlab. The main results reveal that installing a battery storage system is economically attractive today, with net savings on the total system cost of 0.64% yearly. The cost of peak power is reduced by 13.9%, and the savings from peak shaving operation alone is enough to compensate for the yearly cost of the battery. Moreover, the battery ensures additional revenue by performing price arbitrage operations. When simulating the system for an assumed 2030 scenario, the battery is found to be more profitable with a yearly net savings of 4.15%.

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 431
Author(s):  
Nur Najihah Abu Bakar ◽  
Josep M. Guerrero ◽  
Juan C. Vasquez ◽  
Najmeh Bazmohammadi ◽  
Muzaidi Othman ◽  
...  

Microgrids are among the promising green transition technologies that will provide enormous benefits to the seaports to manage major concerns over energy crises, environmental challenges, and economic issues. However, creating a good design for the seaport microgrid is a challenging task, considering different objectives, constraints, and uncertainties involved. To ensure the optimal operation of the system, determining the right microgrid configuration and component size at minimum cost is a vital decision at the design stage. This paper aims to design a hybrid system for a seaport microgrid with optimally sized components. The selected case study is the Port of Aalborg, Denmark. The proposed grid-connected structure consists of renewable energy sources (photovoltaic system and wind turbines), an energy storage system, and cold ironing facilities. The seaport architecture is then optimized by utilizing HOMER to meet the maximum load demand by considering important parameters such as solar global horizontal irradiance, temperature, and wind resources. Finally, the best configuration is analyzed in terms of economic feasibility, energy reliability, and environmental impacts.


2020 ◽  
Vol 10 (3) ◽  
pp. 786
Author(s):  
Sung-Soo Kim ◽  
Wonbin Lee ◽  
Byeong Gwan Bhang ◽  
Jin Ho Choi ◽  
Sang Hun Lee ◽  
...  

In this study, a general building of medium size with an Energy Storage Systems (ESS)-connected Photovoltaic (PV) system (energy storage system that is connected to a photovoltaic system) was chosen to develop a tool for a better economic evaluation of its installation and use. The newly obtained results, from the revised economic evaluation algorithm that was proposed in this study, showed the effective return of investment period (ROI) would be 8.62 to 12.77 years. The ratio of maximum power demand to contract demand and the falling cost of PVs and ESS was the factors that could affect the ROI. While using the cost scenario of PVs and ESS from 2019 to 2024, as estimated by the experts, the ROI was significantly improved. The ROI was estimated to be between 4.26 to 8.56 years by the year 2024 when the cost scenario was considered. However, this result is obtained by controlling the ratio of maximum power demand to contract demand. Continued favorable government policies concerning renewable energy would be crucial in expanding the supply and investment in renewable energy resources, until the required ROI is attained.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Hina Fathima ◽  
K. Palanisamy

Energy storages are emerging as a predominant sector for renewable energy applications. This paper focuses on a feasibility study to integrate battery energy storage with a hybrid wind-solar grid-connected power system to effectively dispatch wind power by incorporating peak shaving and ramp rate limiting. The sizing methodology is optimized using bat optimization algorithm to minimize the cost of investment and losses incurred by the system in form of load shedding and wind curtailment. The integrated system is then tested with an efficient battery management strategy which prevents overcharging/discharging of the battery. In the study, five major types of battery systems are considered and analyzed. They are evaluated and compared based on technoeconomic and environmental metrics as per Indian power market scenario. Technoeconomic analysis of the battery is validated by simulations, on a proposed wind-photovoltaic system in a wind site in Southern India. Environmental analysis is performed by evaluating the avoided cost of emissions.


Author(s):  
Mohammed Reyasudin Basir Khan ◽  
Jagadeesh Pasupuleti ◽  
Jabbar Al-Fattah ◽  
Mehrdad Tahmasebi

<span lang="EN-US">This paper discusses on the implementation of a grid-connected PV system for university campus in Malaysia. The primary goal of this study is to develop a grid-connected microgrid comprises of Photovoltaic (PV) and a battery storage system to meet the campus load demand and minimize grid dependency. The microgrid modeled and simulated in Hybrid Optimization Model for Electrical Renewable (HOMER) software. Actual load profile and renewable resources were used as an input parameter for the hybrid system. The campus selected is Universiti Kuala Lumpur, British Malaysian Institute as it represents typical load profile for a small campus. Therefore, the results can be used to represent hybrid system development for other small campuses in Malaysia as well. Firstly, optimal sizing of renewable energy (RE) were simulated with respect to total Net Present Cost (NPC) and Cost of Energy (COE). Then, sensitivity analysis conducted to determine the system performance based on changes of load growth, and renewable resources. The results demonstrate optimal HRES combinations for the campus microgrid comprises of 50 kWp of PV generations with 50 kW inverter. However, inclusion of 576 kWh battery storage system will increase the NPC but has higher RE penetration.</span>


2018 ◽  
Vol 155 ◽  
pp. 102-110 ◽  
Author(s):  
Michael Böttiger ◽  
Martin Paulitschke ◽  
Richard Beyer ◽  
Lorin Neumann ◽  
Thilo Bocklisch

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Majid K. Abbas ◽  
Qusay Hassan ◽  
Marek Jaszczur ◽  
Zuhair S. Al-Sagar ◽  
Ali N. Hussain ◽  
...  

Abstract The paper presents a technical and economic analysis for two energy systems (conventional and renewable) with grid connection. The investigation was carried out using an experimental measurement for the desired load and weather data (solar irradiance and ambient temperature), were 5.1 kWh the daily energy consumption as measured and 4.6 kWh/m2/day the annual average of the solar irradiance. The simulation process was done by using MATLAB and HOMER software at a 1 min time step resolution. The economic optimization objective presented for two energy system scenarios (i) photovoltaic/grid and (ii) diesel/grid, takes into account the economic aspects and component prices based on the Iraqi market and regulations. The diesel generator, very popular in rural areas, is designed to work during the same period as the photovoltaic system (only during day hours). The yearly operating hours were recorded at 4380 h/year, and energy generation was approx. 2349 kWh/year while fuel consumption was 1826 L/year. The results showed that the photovoltaic system in scenario (i) can generate about 7895 kWh, and for the diesel generator in scenario (ii), it can generate approximately 2346 kWh. Furthermore, for scenario (i) the levelized net present cost is $1079 and the cost of energy is about $0.035/kWh, while for scenario (ii) the levelized net present cost is $12,287 and the cost of energy is $0.598/kWh. The use of solar energy is highly recommended compared to diesel generators due to the lowest cost and delivery of energy to the grid. Furthermore, it can capture carbon dioxide by about 5295 kg/year.


Author(s):  
Pengfei Zhang ◽  
Samuel T. Ariaratnam

Low Impact Development (LID), or green infrastructure, refers to a land planning and engineering design practice to address urban storm runoff. The nature of LID is to mimic the pre-development environment to retain runoff through infiltration, retention, and evaporation. Despite the fact that numerous studies have analyzed the performance of runoff volume reduction and peak flow of various green infrastructures, little is known regarding the economic benefits of adopting LID practices. In this research, three completed construction projects in the Phoenix, Arizona metropolitan area were selected to perform an alternative LID design including extensive green roof (GR) and permeable interlocking concrete pavement (PICP), to determine the cost effectiveness of using LID to reduce the use of a conventional stormwater storage system. A life cycle cost (LCC) analysis was conducted to better understand the cost benefits of applying LID to meet current drainage design criteria as per the project requirements. The results found that applying LID resulted in an average LCC saving rate of 23% compared to a conventional stormwater storage system over a 50 year service life and 15.1% over a full LID (GR+PICP) strategy.  Furthermore, it was discovered that LID has little cost savings benefits when constructing above-ground retention basins due to cheaper associated construction costs.


Author(s):  
Prateek Jain ◽  
Trapti Jain

AbstractThis paper proposes a distinct vehicle-to-grid (V2G) and grid-to-vehicle (G2V) coordination model to utilize the controllability of electric vehicle (EV) battery storage system during the charging and discharging phases for load levelling. The aspect of the vehicles of changeable locations is taken as the basis to obtain a defined mobility pattern, with home and work being selected as the operational places to perform G2V and V2G activities. The presented approach assisted in achieving peak shaving and valley filling (MW) of a typical two-peak daily load curve of a real system to a considerable extent, thereby levelling the load and reducing the complexities associated with the forecasting and dispatch of the oscillating load. The reduction in the ramp up and ramp down energy and reserve requirements (MW), as well as the cost savings associated with reduced generation ramping commitments, as seen from system operator’s perspective, is quantified with the proposed schemes. Results demonstrate that the proposed approach is capable of flattening a realistic amount of load. The associated cost savings with reduced ramping requirements from traditional sources can be allocated to participating vehicles for providing the grid services. The benefits derived can encourage their adoption which is contained due to its expensiveness in the current market scenario, apart from increasing the grid reliability.


2019 ◽  
Vol 116 ◽  
pp. 00045
Author(s):  
Jan Lokar ◽  
Peter Virtič

Energy sources as a solar, wind and water energy are used in production of electrical energy. Their biggest advantage is that they are renewable and they are sustainable. On the other hand, production from renewable energy sources is limited by environmental conditions. Production of photovoltaic systems are dependent on solar radiation, temperature, incidence angle, shadowing and other variable quantities. That is why designing of photovoltaic system is complex. In this paper a photovoltaic system production analysis and consumption analysis in residential house are presented. With real measured data the consumption and production are compared and energy balance equations, battery charge and discharge model are defined and behaviour of battery storage system through the one day are analysed. In addition, the reactive energy production and consumption are also analysed.


Sign in / Sign up

Export Citation Format

Share Document