Energy visibility of a modeled photovoltaic/diesel generator set connected to the grid

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Majid K. Abbas ◽  
Qusay Hassan ◽  
Marek Jaszczur ◽  
Zuhair S. Al-Sagar ◽  
Ali N. Hussain ◽  
...  

Abstract The paper presents a technical and economic analysis for two energy systems (conventional and renewable) with grid connection. The investigation was carried out using an experimental measurement for the desired load and weather data (solar irradiance and ambient temperature), were 5.1 kWh the daily energy consumption as measured and 4.6 kWh/m2/day the annual average of the solar irradiance. The simulation process was done by using MATLAB and HOMER software at a 1 min time step resolution. The economic optimization objective presented for two energy system scenarios (i) photovoltaic/grid and (ii) diesel/grid, takes into account the economic aspects and component prices based on the Iraqi market and regulations. The diesel generator, very popular in rural areas, is designed to work during the same period as the photovoltaic system (only during day hours). The yearly operating hours were recorded at 4380 h/year, and energy generation was approx. 2349 kWh/year while fuel consumption was 1826 L/year. The results showed that the photovoltaic system in scenario (i) can generate about 7895 kWh, and for the diesel generator in scenario (ii), it can generate approximately 2346 kWh. Furthermore, for scenario (i) the levelized net present cost is $1079 and the cost of energy is about $0.035/kWh, while for scenario (ii) the levelized net present cost is $12,287 and the cost of energy is $0.598/kWh. The use of solar energy is highly recommended compared to diesel generators due to the lowest cost and delivery of energy to the grid. Furthermore, it can capture carbon dioxide by about 5295 kg/year.

2021 ◽  
Vol 14 (1) ◽  
pp. 57-66
Author(s):  
Saadoon Abdul Hafedh

Hybrid energy systems is an energy system which employs the combination of various renewable energy sources (solar, wind, biomass, hydro, and hydrogen fuel) with conventional energy sources to supply electricity. These systems have become reliable and most cost-effective as compare to single-source energy system for rural electrification. The objective of the present study is to address the demand for electrification of remote rural village in eastern Iraq. The methodology is carried out for optimization of hybrid energy system comprising (Photovoltaic, battery, diesel generator) by using HOMER to minimize the cost of energy and the greenhouse gas emissions. For different configuration of energy sources, the capital cost, net present cost and cost of energy is determined for the optimized hybrid energy system on the basis of the electric consumption demand for the selected site. The simulation results show that the most techno-economic analysis for hybrid energy system can feed the  rural village in eastern Iraq to meet a daily load of 30 kW has consisted of 6 kW photovoltaic array, 7 kW power inverter, 20 units of battery (305 Ah and 6V) and 35 kW wind turbines. The optimized energy system has a cost of energy about $ 0.117/kWh and total net present cost  by about $14800. The environmental assessment of the hybrid system shows that the greenhouse gases emissions will reduce about 25ton CO2/year (16968 kg/year) in the local atmosphere.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6373
Author(s):  
Vijay Mudgal ◽  
Preeti Singh ◽  
Sourav Khanna ◽  
Chandan Pandey ◽  
Victor Becerra ◽  
...  

The intermittent nature of renewable sources, such as solar and wind, leads to the need for a hybrid renewable energy system (HRES) that can provide uninterrupted and reliable energy to a remote and off-grid location with the use of a biogas generator and battery. In the present study, conventional PV panels have been integrated with phase change material (PCM) for power enhancement. In addition, various configurations (i. PV-Wind-Battery system, ii. PV-PCM-Wind-Battery, iii. PV-Wind-Biogas-Battery and iv. PV-PCM-Wind-Biogas-Battery) have been compared for the hot and humid climatic location of Chennai, India. Optimization has been carried out to minimize the cost of energy and the net present cost has also been computed. It has been found that the integration of PCM with the PV-Wind-Biogas-Battery-based off-grid system results in savings of USD 0.22 million in terms of net present cost and reduces the cost of energy from USD 0.099/kWh to USD 0.094/kWh. Similarly, for another off-grid HRES configuration of PV-Wind-Battery, the integration of PCM results in savings of USD 0.17 million, and reduces the cost of energy from USD 0.12/kWh to USD 0.105/kWh.


2020 ◽  
Vol 13 (1) ◽  
pp. 93
Author(s):  
Wesam H. Beitelmal ◽  
Paul C. Okonkwo ◽  
Fadhil Al Housni ◽  
Wael Alruqi ◽  
Omar Alruwaythi

Diesel generators are being used as a source of electricity in different parts of the world. Because of the significant expense in diesels cost and the requirement for a greener domain, such electric generating systems appear not to be efficient and environmentally friendly and should be tended to. This paper explores the attainability of utilizing a sustainable power source based on a cross-breed electric system in the cement factory in Salalah, Oman. The HOMER software that breaks down the system setup was utilized to examine the application and functional limitations of each hybridized plan. The result showed that a renewable-energy (RE)-based system has a lower cost of energy (COE) and net present cost (NPC) compared to diesel generator-based hybrid electric and standalone systems. Although the two pure renewable hybrid energy systems considered in this study displayed evidence of no emissions, lower NPC and COE values are observed in the photovoltaic/battery (PV/B) hybrid energy system compared with photovoltaic/wind turbine/battery (PV/WT/B). The PV/WT/B and PV/B systems have higher electricity production and low NPC and COE values. Moreover, the PV/B has the highest return on investment (ROI) and internal rate of return (IRR), making the system the most economically viable and adjudged to be a better candidate for rural community electrification demands.


2018 ◽  
Vol 240 ◽  
pp. 04003 ◽  
Author(s):  
Marek Jaszczur ◽  
Qusay Hassan ◽  
Janusz Teneta

In this paper, an investigation of the electrical load temporal resolution on the PV/Grid energy system flows, and self-consumption is done in order to determine the optimum parameters for modelling and simulation. The analysed PV/Grid power systems include a photovoltaic system with the nominal power of Pmax@STC=1.5, 2.5, 3.5 kW without storage unit connected to the grid. The results show that the temporal load resolution may have a high impact on energy flows as well as can be a critical issue for the system analysis accuracy even for the single household. It has been found that the load temporal resolution for energy consumption of 1-min yields reliable results, while data resolutions of 5 and 15 min are still sufficient, however, in that case, the daily electrical energy flows and in consequence energy self-consumption estimation error for selected days may exceed 15%. Acquisition time step longer than 15-minutes may increase error above 20% and from the designer’s point of view should not be used. The high and low temporal resolution experimental data of the electricity consumption (load) for a household are available in digital form on the author’s website http://home.agh.edu.pl/jaszczur.


2018 ◽  
Vol 8 (5) ◽  
pp. 3421-3426 ◽  
Author(s):  
F. Chermat ◽  
M. Khemliche ◽  
A. E. Badoud ◽  
S. Latreche

This work aims to consider the combination of different technologies regarding energy production and management with four possible configurations. We present an energy management algorithm to detect the best design and the best configuration from the combination of different sources. This combination allows us to produce the necessary electrical energy for supplying habitation without interruption. A comparative study is conducted among the different combinations on the basis of the cost of energy, diesel consumption, diesel price, capital cost, replacement cost, operation, and maintenance cost and greenhouse gas emission. Sensitivity analysis is also performed.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Hussein A. Kazem ◽  
Ali H. A. Al-Waeli ◽  
Atma H. K. Al-Kabi ◽  
Asma Al-Mamari

Photovoltaic (PV) systems have been used globally for a long time to supply electricity for water pumping system for irrigation. System cost drops down with time since PV technology, efficiency, and design methodology have been improved and cost of wattage drops dramatically in the last decade. In the present paper optimum PV system design for water pumping system has been proposed for Oman. Intuitive and numerical methods were used to design the system. HOMER software as a numerical method was used to design the system to come up with optimum design for Oman. Also, REPS.OM software has been used to find the optimum design based on hourly meteorological data. The daily solar energy in Sohar was found to be 6.182 kWh/m2·day. However, it is found that the system annual yield factor is 2024.66 kWh/kWp. Furthermore, the capacity factor was found to be 23.05%, which is promising. The cost of energy and system capital cost has been compared with that of diesel generator and systems in literature. The comparison shows that the cost of energy is 0.180, 0.309, and 0.790 USD/kWh for PV-REPS.OM, PV-HOMER, and diesel systems, respectively, which sound that PV water pumping systems are promising in Oman.


2017 ◽  
Vol 63 (No. 4) ◽  
pp. 168-171
Author(s):  
Perakis Christoforos ◽  
Kyriakarakos George ◽  
Hani Nabeel Bani ◽  
Hammad Shaker ◽  
Damasiotis Markos

Agriculture is the sector that consumes by far most water globally. Much research efforts aim at minimizing losses through the use of drip irrigation. Rural agricultural areas often do not have access to a main electrical grid to power the pumps needed for drip irrigation; it reduces the options in paying for a grid extension, getting a diesel generator or investing in an off-grid renewable energy system. In this paper, these alternatives are assessed technically and economically under real world conditions through the Jordan Valley case study. The results show that the autonomous photovoltaic (PV)-battery system is preferable to the use of a diesel generator, as well as it is preferable to the main grid extension in many cases depending on the cost of grid electricity and distance from the grid. For current subsidized grid electricity retail price to farmers, the PV-battery system becomes more attractive above a 300 m distance from the grid, while if the actual cost of electricity production in Jordan is taken into account, then it breaks even to 128 m. 


Author(s):  
Mohamed Izdin Hlal ◽  
Vigna K. Ramachandaramurthya ◽  
Sanjeevikumar Padmanaban ◽  
Hamid Reza Kaboli ◽  
Aref Pouryekta ◽  
...  

<span lang="MS">This paper presents a Stand-alone Hybrid Renewable Energy System (SHRES) as an alternative to fossil fuel based generators. The Photovoltaic (PV) panels and wind turbines (WT) are designed for the Malaysian low wind speed conditions with battery Energy Storage (BES) to provide electric power to the load. The appropriate sizing of each component was accomplished using Non-dominated Sorting Genetic Algorithm (NSGA-II) and Multi-Objective Particle Swarm Optimization (MOPSO) techniques. The optimized hybrid system was examined in MATLAB using two case studies to find the optimum number of PV panels, wind turbines system and BES that minimizes the Loss of Power Supply Probability (LPSP) and Cost of Energy (COE). The hybrid power system was connected to the AC bus to investigate the system performance in supplying a rural settlement. Real weather data at the location of interest was utilized in this paper. The results obtained from the two scenarios were used to compare the suitability of the NSGA-II and MOPSO methods. The NSGA-II method is shown to be more accurate whereas the MOPSO method is faster in executing the optimization. Hence, both these methods can be used for techno-economic optimization of SHRES. </span>


Author(s):  
M. A. El-Bayoumi ◽  
Marwa M. Ibrahim

The energy from renewable sources had always been perceived as free or at least lower-cost energy, with its sourcing from natural sources such as solar radiation and wind energy. In actual the cost breakdown of renewable energy would exceed that of traditional energy sources in almost all cases. This study attempts to produce a cost model for renewable energy systems. The model takes into account different requirements and site variations into account. In this paper, elements of the cost model Renewable Energy System (RES) especially, photo-voltaic solar systems, have been investigated. Cost items are presented alongside a to-do checklist for the new Photo-Voltaic (PV) solar energy system. The goal of this study is to construct a model that would cover the cost sources as well as bring to attention the unexpected sources of cost variations that include all possible cost items of a new solar renewable energy system. The feasibility of the new system is expressed in terms of Total Cost (T.C) and Cost of Energy (COE). The model can evaluate the feasibility of off-grid as well as on-grid systems. The model investigated properly as well as an empirical analysis and verified through results comparison with reviewed case studies. The results revealed that the cost of off-grid systems is higher than the cost of on-grid systems due to the cost of batteries as well as the cost of standby generators. So, it would be more feasible to use an off-grid system only in remote or isolated areas. Risk Cost lists, ranking and success factors of new renewable projects are exhibited.


Sign in / Sign up

Export Citation Format

Share Document