scholarly journals A Widespread Review of Smart Grids Towards Smart Cities

Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4484 ◽  
Author(s):  
Mina Farmanbar ◽  
Kiyan Parham ◽  
Øystein Arild ◽  
Chunming Rong

Nowadays, the importance of energy management and optimization by means of smart devices has arisen as an important issue. On the other hand, the intelligent application of smart devices stands as a key element in establishing smart cities, which have been suggested as the solution to complicated future urbanization difficulties in coming years. Considering the scarcity of traditional fossil fuels in the near future, besides their ecological problems the new smart grids have demonstrated the potential to merge the non-renewable and renewable energy resources into each other leading to the reduction of environmental problems and optimizing operating costs. The current paper clarifies the importance of smart grids in launching smart cities by reviewing the advancement of micro/nano grids, applications of renewable energies, energy-storage technologies, smart water grids in smart cities. Additionally a review of the major European smart city projects has been carried out. These will offer a wider vision for researchers in the operation, monitoring, control and audit of smart-grid systems.

Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6269
Author(s):  
Ibrahim Alotaibi ◽  
Mohammed A. Abido ◽  
Muhammad Khalid ◽  
Andrey V. Savkin

The smart grid is an unprecedented opportunity to shift the current energy industry into a new era of a modernized network where the power generation, transmission, and distribution are intelligently, responsively, and cooperatively managed through a bi-directional automation system. Although the domains of smart grid applications and technologies vary in functions and forms, they generally share common potentials such as intelligent energy curtailment, efficient integration of Demand Response, Distributed Renewable Generation, and Energy Storage. This paper presents a comprehensive review categorically on the recent advances and previous research developments of the smart grid paradigm over the last two decades. The main intent of the study is to provide an application-focused survey where every category and sub-category herein are thoroughly and independently investigated. The preamble of the paper highlights the concept and the structure of the smart grids. The work presented intensively and extensively reviews the recent advances on the energy data management in smart grids, pricing modalities in a modernized power grid, and the predominant components of the smart grid. The paper thoroughly enumerates the recent advances in the area of network reliability. On the other hand, the reliance on smart cities on advanced communication infrastructure promotes more concerns regarding data integrity. Therefore, the paper dedicates a sub-section to highlight the challenges and the state-of-the-art of cybersecurity. Furthermore, highlighting the emerging developments in the pricing mechanisms concludes the review.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 2043
Author(s):  
Il-Gu Lee ◽  
Kyungmin Go ◽  
Jung Hoon Lee

Wi-Fi technology connects sensor-based things that operate with small batteries, and allows them to access the Internet from anywhere at any time and perform networking. It has become a critical element in many areas of daily life and industry, including smart homes, smart factories, smart grids, and smart cities. The Wi-Fi-based Internet of things is gradually expanding its range of uses from new industries to areas that are intimately connected to people’s lives, safety, and property. Wi-Fi technology has undergone a 20-year standardization process and continues to evolve to improve transmission speeds and service quality. Simultaneously, it has also been strengthening power-saving technology and security technology to improve energy efficiency and security while maintaining backward compatibility with past standards. This study analyzed the security vulnerabilities of the Wi-Fi power-saving mechanism used in smart devices and experimentally proved the feasibility of a battery draining attack (BDA) on commercial smartphones. The results of the experiment showed that when a battery draining attack was performed on power-saving Wi-Fi, 14 times the amount of energy was consumed compared with when a battery draining attack was not performed. This study analyzed the security vulnerabilities of the power-saving mechanism and discusses countermeasures.


2005 ◽  
Vol 895 ◽  
Author(s):  
Anne C. Dillon ◽  
Brent P. Nelson ◽  
Yufeng Zhao ◽  
Yong-Hyun Kim ◽  
C. Edwin Tracy ◽  
...  

AbstractThe majority of the world energy consumption is derived from fossil fuels. Furthermore, the United States (US) consumption of petroleum vastly exceeds its production, with the majority of petroleum being consumed in the transportation sector. The increasing dependency on foreign fuel resources in conjunction with the severe environmental impacts of a petroleum-based society dictates that alternative renewable energy resources be developed. The US Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy and the Office of Basic Energy Sciences are currently promoting a vehicular hydrogen-based energy economy. However, none of the current on-board storage technologies are suitable for practical and safe deployment. Significant scientific advancement is therefore still required if a viable on-board storage technology is to be developed. A detailed discussion of the benefits of transitioning to a hydrogen-powered automotive fleet as well as the tremendous technical hurdles faced for the development of an on-board hydrogen storage system are provided here. A novel class of theoretically predicted nanostructured materials that could revolutionize hydrogen storage materials is also presented.


Author(s):  
Ganesh Khekare ◽  
Pushpneel Verma ◽  
Urvashi Dhanre ◽  
Seema Raut ◽  
Ganesh Yenurkar

The internet of things (IoT) is transpiring technology. In the last decade, demand of IoT has been increased due to various things like the use of smart devices; increased demand for voice-based services; the concept of smart cities has been evolved; more requirements of processed data in fields of artificial intelligence and machine learning; fog computing, deep learning, etc. IoT is expected to reach the milestone of 30 billion IoT units at the end of the year 2020. Internet of things is the network of statutory things like houses, private companies, automobiles, and various objects integrated with sensors, actuators, software, electronic equipment, and internet availability that provides the facility to devices to interchange their data. The main contribution of this article is to provide state of art about the characteristics, functionalities, and challenges of the internet of things and the journey of IoT right from start to how it will make an impact on people's quality of life throughout the world in the near future.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8121
Author(s):  
Ahmed Samy ◽  
Haining Yu ◽  
Hongli Zhang ◽  
Guangyao Zhang

Recently, the development of distributed renewable energy resources, smart devices, and smart grids empowers the emergence of peer-to-peer energy trading via local energy markets. However, due to security and privacy concerns in energy trading, sensitive information of energy traders could be leaked to an adversary. In addition, malicious users could perform attacks against the energy market, such as collusion, double spending, and repudiation attacks. Moreover, network attacks could be executed by external attackers against energy networks, such as eavesdropping, data spoofing, and tampering attacks. To tackle the abovementioned attacks, we propose a secure and privacy-preserving energy trading system (SPETS). First, a permissioned energy blockchain is presented to perform secure energy transactions between energy sellers and buyers. Second, a discrete-time double auction is proposed for energy allocation and pricing. Third, the concept of reputation scores is adopted to guarantee market reliability and trust. The proposed energy system is implemented using Hyperledger Fabric (HF) where the chaincode is utilized to control the energy market. Theoretical analysis proves that SPETS is resilient to several security attacks. Simulation results demonstrate the increase in sellers’ and buyers’ welfare by approximately 76.5% and 26%, respectively. The proposed system ensures trustfulness and guarantees efficient energy allocation. The benchmark analysis proves that SPETS consumes few resources in terms of memory and disk usage, CPU, and network utilization.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Angel A. Bayod-Rújula ◽  
Alessandro Burgio ◽  
Zbigniew Leonowicz ◽  
Daniele Menniti ◽  
Anna Pinnarelli ◽  
...  

The paper presents a review of the recent developments of photovoltaics integrated with battery storage systems (PV-BESs) and related to feed-in tariff policies. The integrated photovoltaic battery systems are separately discussed in the regulatory context of Germany, Italy, Spain, United Kingdom, Australia, and Greece; the attention of this paper is focused on those integrated systems subject to incentivisation policies such as feed-in tariff. Most of the contributions reported in this paper consider already existing incentive schemes; the remaining part of the contributions proposes interesting and novel feed-in tariff schemes. All the contributions provide an important resource for carrying out further research on a new era of incentive policies in order to promote storage technologies and integrated photovoltaic battery systems in smart grids and smart cities. Recent incentive policies adopted in Germany, Italy, Spain, and Australia are also discussed.


Author(s):  
Anita Rønne

Increasing focus on sustainable societies and ‘smart cities’ due to emphasis on mitigation of climate change is simultaneous with ‘smart regulation’ reaching the forefront of the political agenda. Consequently, the energy sector and its regulation are undergoing significant innovation and change. Energy innovations include transition from fossil fuels to more renewable energy sources and application of new computer technology, interactively matching production with consumer demand. Smart cities are growing and projects are being initiated for development of urban areas and energy systems. Analysis from ‘Smart Cities Accelerator’, developed under the EU Interreg funding programme that includes Climate-KIC,——provides background for the focus on a smart energy system. Analysis ensures the energy supply systems support the integration of renewables with the need for new technologies and investments. ‘Smart’ is trendy, but when becoming ‘smart’ leads to motivation that is an important step towards mitigating climate change.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4776
Author(s):  
Seyed Mahdi Miraftabzadeh ◽  
Michela Longo ◽  
Federica Foiadelli ◽  
Marco Pasetti ◽  
Raul Igual

The recent advances in computing technologies and the increasing availability of large amounts of data in smart grids and smart cities are generating new research opportunities in the application of Machine Learning (ML) for improving the observability and efficiency of modern power grids. However, as the number and diversity of ML techniques increase, questions arise about their performance and applicability, and on the most suitable ML method depending on the specific application. Trying to answer these questions, this manuscript presents a systematic review of the state-of-the-art studies implementing ML techniques in the context of power systems, with a specific focus on the analysis of power flows, power quality, photovoltaic systems, intelligent transportation, and load forecasting. The survey investigates, for each of the selected topics, the most recent and promising ML techniques proposed by the literature, by highlighting their main characteristics and relevant results. The review revealed that, when compared to traditional approaches, ML algorithms can handle massive quantities of data with high dimensionality, by allowing the identification of hidden characteristics of (even) complex systems. In particular, even though very different techniques can be used for each application, hybrid models generally show better performances when compared to single ML-based models.


Author(s):  
Kau-Fui Vincent Wong ◽  
Guillermo Amador

As society continues advancing into the future, more energy is required to supply the increasing population and energy demands. Unfortunately, traditional forms of energy production through the burning of carbon-based fuels are dumping harmful pollutants into the environment, resulting in detrimental, and possibly irreversible, effects on our planet. The burning of coal and fossil fuels provides energy at the least monetary cost for countries like the US, but the price being paid through their negative impact of our atmosphere is difficult to quantify. A rapid shift to clean, alternative energy sources is critical in order to reduce the amount of greenhouse gas emissions. For alternative energy sources to replace traditional energy sources that produce greenhouse gases, they must be capable of providing energy at equal or greater rates and efficiencies, while still functioning at competitive prices. The main factors hindering the pursuit of alternative sources are their high initial costs and, for some, intermittency. The creation of electrical energy from natural sources like wind, water, and solar is very desirable since it produces no greenhouse gases and makes use of renewable sources—unlike fossil fuels. However, the planning and technology required to tap into these sources and transfer energy at the rate and consistency needed to supply our society comes at a higher price than traditional methods. These high costs are a result of the large-scale implementation of the state-of-the-art technologies behind the devices required for energy cultivation and delivery from these unorthodox sources. On the other hand, as fossil fuel sources become scarcer, the rising fuel costs drive overall costs up and make traditional methods less cost effective. The growing scarcity of fossil fuels and resulting pollutants stimulate the necessity to transition away from traditional energy production methods. Currently, the most common alternative energy technologies are solar photovoltaics (PVs), concentrated solar power (CSP), wind, hydroelectric, geothermal, tidal, wave, and nuclear. Because of government intervention in countries like the US and the absence of the need to restructure the electricity transmission system (due to the similarity in geographical requirements and consistency in power outputs for nuclear and traditional plants), nuclear energy is the most cost competitive energy technology that does not produce greenhouse gases. Through the proper use of nuclear fission electricity at high efficiencies could be produced without polluting our atmosphere. However, the initial capital required to erect nuclear plants dictates a higher cost over traditional methods. Therefore, the government is providing help with the high initial costs through loan guarantees, in order to stimulate the growth of low-emission energy production. This paper analyzes the proposal for the use of nuclear power as an intermediate step before an eventual transition to greater dependence on energy from wind, water, and solar (WWS) sources. Complete dependence on WWS cannot be achieved in the near future, within 20 years, because of the unavoidable variability of these sources and the required overhaul of the electricity transmission system. Therefore, we look to nuclear power in the time being to help provide predictable power as a means to reduce carbon emissions, while the other technologies are refined and gradually implemented in order to meet energy demand on a consistent basis.


Sign in / Sign up

Export Citation Format

Share Document