scholarly journals An Experimental Study on the Actuator Line Method with Anisotropic Regularization Kernel

Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 977
Author(s):  
Zhe Ma ◽  
Liping Lei ◽  
Earl Dowell ◽  
Pan Zeng

Nowadays, actuator line method (ALM) has become the most potential method in wind turbine simulations, especially in wind farm simulations and fluid-structure interaction simulations. The regularization kernel, which was originally introduced to ALM to avoid numerical singularity, has been found to have great influence on rotor torque predictions and wake simulations. This study focuses on the effect of each parameter used in the standard kernel and the anisotropic kernel. To validate the simulation, the torque and the wake characteristics of a model wind turbine were measured. The result shows that the Gaussian width ϵ (for standard kernel) and the parameter in chord length direction ϵc (for anisotropic kernel) mainly affect the normal velocity of each blade element when using ALM but have little effect on the tangential velocity calculation. Therefore, these parameters have great influence on the attack angle and rotor torque prediction. The thickness parameter ϵ t is the main difference between the standard kernel and the anisotropic kernel and it has a strong effect on the wind turbine wakes simulation. When using the anisotropic kernel, the wake structure is clearer and less likely to disperse, which is more consistent with the experimental results. Based on the studies above, a non-uniform mesh is recommended when using the anisotropic regularization kernel. Using a mesh refined in the main flow direction, ALM with anisotropic kernel can predict torque and wake characteristics better while maintaining low computational costs.

Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2395 ◽  
Author(s):  
Haojun Tang ◽  
Kit-Ming Lam ◽  
Kei-Man Shum ◽  
Yongle Li

This paper presents wind tunnel tests on the wake characteristics of a three-blade horizontal axis wind turbine and the wake effect on the performance of a downstream turbine. For a single turbine model, the performance was determined and this was followed by measurement of the wind characteristics including velocities, turbulence intensities, and correlation in the wake flow field. Subsequently, taking two horizontal axis wind turbines in a tandem arrangement into account, their performance was tested and the aerodynamic mechanism was discussed. The results showed that the upstream turbine with blades set at a small pitch angle provided smaller disturbance to the flow, but as the blade turned faster, larger changes in the velocity and the turbulence intensity occurred in its wake due to the more frequent disturbance of the wind turbine. The correlation of wake velocities in the turbine swept area also obviously decreased from the free-stream situation. For the downstream turbine, the output power loss largely depended on the wake characteristics of the upstream turbine, which was closely related to lower wind velocities or higher turbulence intensities. The decrease in correlation of the streamwise velocity within the blade swept area is accompanied by the increased correlation of the tangential velocity, which may be beneficial to the downstream turbine’s performance.


1969 ◽  
Vol 11 (5) ◽  
pp. 454-467 ◽  
Author(s):  
K. Murugesan ◽  
J. W. Railly

An extension of Martensen's method is described which permits an exact solution of the inverse or blade design problem. An equation is derived for the normal velocity distributed about a given contour when a given tangential velocity is imposed about the contour and from this normal velocity an initial arbitrarily chosen blade shape may be successively modified until a blade is found having a desired surface velocity distribution. Five examples of the method are given.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 336 ◽  
Author(s):  
Jingyu Qu ◽  
Tie Yan ◽  
Xiaofeng Sun ◽  
Zijian Li ◽  
Wei Li

The hole cleaning device is a powerful application which can effectively slow down the deposition of cuttings during drilling. However, in this complicated swirl flow created by the device, the decay of the swirl flow and the particle behavior are not evident yet. In this paper, the decay of the swirl flow and the particle behavior in the swirl flow field are studied by the Eulerian–Eulerian two-fluid model (TFM) coupled with the kinetic theory of granular flows (KTGF), and sliding mesh (SM) technique for simulating the fluid flow. The results show that the swirl intensity decays exponentially along the flow direction under laminar flow conditions. The swirl flow has a longer acting distance at a higher rotational speed, which can effectively slow down the deposition of cutting particles. The initial swirl intensity of swirl flow induced by the blades increases significantly with the increase of blade height and the decrease of the blade angle. The tangential velocity of the cutting particles in the annulus is more significant near the central region, gradually decreases toward the wall in the radial direction, and rapidly decreases to 0 at the wall surface. The decay rate is negatively correlated with the initial swirl intensity. The results presented here may provide a useful reference for the design of the hole cleaning device.


2019 ◽  
Vol 12 (1) ◽  
pp. 34
Author(s):  
Long Wang ◽  
Cheng Chen ◽  
Tongguang Wang ◽  
Weibin Wang

A new simulation method for the aeroelastic response of wind turbines under typhoons is proposed. The mesoscale Weather Research and Forecasting (WRF) model was used to simulate a typhoon’s average wind speed field. The measured power spectrum and inverse Fourier transform method were coupled to simulate the pulsating wind speed field. Based on the modal method and beam theory, the wind turbine model was constructed, and the GH-BLADED commercial software package was used to calculate the aerodynamic load and aeroelastic response. The proposed method was applied to assess aeroelastic response characteristics of a commercial 6 MW offshore wind turbine under different wind speeds and direction variation patterns for the case study of typhoon Hagupit (2008), with a maximal wind speed of 230 km/h. The simulation results show that the typhoon’s average wind speed field and turbulence characteristics simulated by the proposed method are in good agreement with the measured values: Their difference in the main flow direction is only 1.7%. The scope of the wind turbine blade in the typhoon is significantly larger than under normal wind, while that under normal operation is higher than that under shutdown, even at low wind speeds. In addition, an abrupt change in wind direction has a significant impact on wind turbine response characteristics. Under normal operation, a sharp variation of the wind direction by 90 degrees in 6 s increases the wind turbine (WT) vibration scope by 27.9% in comparison with the case of permanent wind direction. In particular, the maximum deflection of the wind tower tip in the incoming flow direction reaches 28.4 m, which significantly exceeds the design standard safety threshold.


1996 ◽  
Vol 42 (142) ◽  
pp. 413-425 ◽  
Author(s):  
Øyvind Armand Høydal

Abstract Stresses and velocities at depth are calculated across Jutulstraumen, an ice stream in Dronning Maud Land, draining about 1% of the Antarctic ice sheet. The force-balance study is based on data from kinematic GPS measurements on three strain nets, each consisting of 3 × 3 stakes. The maximum measured velocity is 443 m a−1 and the velocity variation over short distances is large compared with studied ice streams in West Antarctica. The surface topography together with the measured velocities across the profile indicate that the bottom topography has a great influence on the flow direction, even where the ice thickness is more than 2000 m. The basal shear stresses are calculated as 180, 227 and 146 kPa in the three Strain nets, while the corresponding driving stresses are 180, 122 and 111 kPa (±5%). The heat produced by sliding and internal deformation is sufficient to keep the base at the pressure-melting point. The annual basal melting is estimated to be about 60 mm. Investigations on the effect of temperature softening show that the flow parameter’s influence on the effective strain rate is more important than the flow parameter’s direct softening in the flow low alone. The mass flow calculated by the force-balance method is between 87 and 96% of pure plug flow and total discharge is calculated to be 13.3 ± 10 km3a-1.


Sign in / Sign up

Export Citation Format

Share Document