scholarly journals The effects of Microalgae Biomass Co-Substrate on Biogas Production from the Common Agricultural Biogas Plants Feedstock

Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2186 ◽  
Author(s):  
Marcin Dębowski ◽  
Marta Kisielewska ◽  
Joanna Kazimierowicz ◽  
Aleksandra Rudnicka ◽  
Magda Dudek ◽  
...  

The aim of this study was to determine the effects on methane production of the addition of microalgae biomass of Arthrospira platensis and Platymonas subcordiformis to the common feedstock used in agricultural biogas plants (cattle manure, maize silage). Anaerobic biodegradability tests were carried out using respirometric reactors operated at an initial organic loading rate of 5.0 kg volatile solids (VS)/m3, temperature of 35°C, and a retention time of 20 days. A systematic increase in the biogas production efficiency was found, where the ratio of microalgae biomass in the feedstock increased from 0% to 40% (%VS). Higher microalgae biomass ratio did not have a significant impact on improving the efficiency of biogas production, and the biogas production remained at a level comparable with 40% share of microalgae biomass in the feedstock. This was probably related to the carbon to nitrogen (C/N) ratio decrease in the mixture of substrates. The use of Platymonas subcordiformis ensured higher biogas production, with the maximum value of 1058.8 ± 25.2 L/kg VS. The highest content of methane, at an average concentration of 65.6% in the biogas produced, was observed in setups with Arthrospira plantensis biomass added at a concentration of between 20%–40% to the feedstock mixture.

Processes ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1290
Author(s):  
Xavier Álvarez ◽  
Olga Arévalo ◽  
Miriam Salvador ◽  
Ingrid Mercado ◽  
Borja Velázquez-Martí

The unique perspective that microalgae biomass presents for bioenergy production is currently being strongly considered. This type of biomass production involves large amounts of nutrients, due to nitrogen and phosphorous fertilizers, which impose production limitations. A viable alternative to fertilizers is wastewater, rich in essential nutrients (carbon, nitrogen, phosphorus, potassium). Therefore, Arthrospira platensis was cultivated in 150 mL photobioreactors with 70% (v/v) with the wastewater from a dairy industry, under a regime of light:dark cycles (12 h:12 h), with an irradiance of 140 μmol m−2 s−1 photon. The discontinuous cultures were inoculated with an average concentration of chlorophyll-a of 13.19 ± 0.19 mg L−1. High biomass productivity was achieved in the cultures with wastewater from the dairy industry (1.1 ± 0.02 g L−1 d−1). This biomass was subjected to thermal and physical treatments, to be used in co-digestion with cattle manure. Co-digestion was carried out in a mesophilic regime (35 °C) with a C: N ratio of 19:1, reaching a high methane yield of 482.54 ± 8.27 mL of CH4 g−1 volatile solids (VS), compared with control (cattle manure). The results demonstrate the effectiveness of the use of cyanobacterial biomass grown in wastewater to obtain bioenergy.


Detritus ◽  
2020 ◽  
pp. 11-18 ◽  
Author(s):  
Senem Önen Cinar ◽  
Kerstin Kuchta

The study examines the effect of temperature fluctuations on biogas production efficiency in biogas plants with the aim of evaluating the temperature flexibility of the process. Laboratory scale batch reactors were prepared with the chosen substrate (Dried Distillers Grains with Soluble, DDDS) and the study was conducted in three batches. A biogas formation potential test was implemented in each batch in a temperature-controlled room and in a temperature controlled water bath. The temperature changes took place on the third day of tests to evaluate the effect of 5°C, 10°C and 15°C increases on biogas production efficiency in separate test sets. Batch experiments showed that it is possible to ensure process recovery after 5°C and 10°C increases. Overall, the specific biomethane production was obtained between 364-412 Nml CH4 / g oDM. Unlike 5°C and 10°C increases, after 15°C increase a lower methane content was obtained. These results show that it is possible to have flexible temperature operation in the process, even with high-temperature increases.


2018 ◽  
Vol 10 (12) ◽  
pp. 4588 ◽  
Author(s):  
Yanran Fu ◽  
Tao Luo ◽  
Zili Mei ◽  
Jiang Li ◽  
Kun Qiu ◽  
...  

Dry anaerobic digestion technology (DADT) is considered a highly feasible way to treat agricultural straw waste; however, most practical operations are always in low efficiency, due to the poor fluidity behavior and complex lignocellulosic structure of straw, which is not easily decomposed by anaerobic bacteria. Hence, it is necessary to further investigate the operation boundary, in order to increase biogas production efficiency for effective applications. In this paper, typical DADTs are reviewed and their suitability for application in China is analyzed. The advantages and disadvantages of different anaerobic digestion processes are evaluated considering pretreatment, organic loading rate, anaerobic digestion temperature, and homogenization of the feedstock and inoculate. The suitability of the DADTs is evaluated considering the accessibility of straw resources and the convenience of biogas use. It is concluded that batch anaerobic digestion processes would be more suitable for the development of southern China due to the prevalence of small-scale agriculture, while continuous anaerobic digestion would be preferable in the north where large-scale agriculture is common. However, the DADTs discussed here need to broad application in China.


2019 ◽  
Vol 9 (9) ◽  
pp. 1915 ◽  
Author(s):  
Shiplu Sarker ◽  
Jacob J. Lamb ◽  
Dag R. Hjelme ◽  
Kristian M. Lien

Many operating parameters, individually or together, may influence the performance of anaerobic digestion towards biogas or digestate yield and quality maximization. The most preferred method of optimizing an anaerobic digestion plant often relies on how carefully the crucial parameters, such as pH, temperature, organic loading rate, hydraulic retention time, and pressure, are chosen. There is a large amount of literature available on optimization of anaerobic digestion; however, given the continued development and implementation of innovative technologies, together with the introduction of increasingly complex systems, it is necessary to update present knowledge on process parameters and their role on operational ranges and flexibilities in real-life anaerobic digestion system. Accordingly, the present review discusses the importance of the selection of operational parameters in existing technologies and their impact on biogas yield. Notably, the four broad areas of feedstock utilization (substrate, inoculum, codigestion and pretreatment), process condition (pH, temperature, pressure, and reactor design), reactor control (HRT and OLR) and inhibition (Ammonia and VFAs) are covered in this review. In addition, particular emphasis is placed on the most recent innovations that have been or may be implemented in current or future biogas plants.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Karol Postawa ◽  
Jerzy Szczygieł ◽  
Marek Kułażyński

Abstract Background Increasing the efficiency of the biogas production process is possible by modifying the technological installations of the biogas plant. In this study, specific solutions based on a mathematical model that lead to favorable results were proposed. Three configurations were considered: classical anaerobic digestion (AD) and its two modifications, two-phase AD (TPAD) and autogenerative high-pressure digestion (AHPD). The model has been validated based on measurements from a biogas plant located in Poland. Afterward, the TPAD and AHPD concepts were numerically tested for the same volume and feeding conditions. Results The TPAD system increased the overall biogas production from 9.06 to 9.59%, depending on the feedstock composition, while the content of methane was slightly lower in the whole production chain. On the other hand, the AHPD provided the best purity of the produced fuel, in which a methane content value of 82.13% was reached. At the same time, the overpressure leads to a decrease of around 7.5% in the volumetric production efficiency. The study indicated that the dilution of maize silage with pig manure, instead of water, can have significant benefits in the selected configurations. The content of pig slurry strengthens the impact of the selected process modifications—in the first case, by increasing the production efficiency, and in the second, by improving the methane content in the biogas. Conclusions The proposed mathematical model of the AD process proved to be a valuable tool for the description and design of biogas plant. The analysis shows that the overall impact of the presented process modifications is mutually opposite. The feedstock composition has a moderate and unsteady impact on the production profile, in the tested modifications. The dilution with pig manure, instead of water, leads to a slightly better efficiency in the classical configuration. For the TPAD process, the trend is very similar, but the AHPD biogas plant indicates a reverse tendency. Overall, the recommendation from this article is to use the AHPD concept if the composition of the biogas is the most important. In the case in which the performance is the most important factor, it is favorable to use the TPAD configuration.


Author(s):  
Zaida Natalia Uribe-Wandurraga ◽  
María Bravo-Villar ◽  
Marta Igual ◽  
Carmen Savall ◽  
Purificación García-Segovia ◽  
...  

AbstractJams are preparations of fruits whose main preserving agent is sugar. Due to this, health concerns of consumers have resulted in a sugar reduction, and its replacement using alternative sweeteners and introducing new ingredients enhancing nutritional properties. In this study, four types of fruits jams (plum, strawberry, apple, and peach), with or without sugar, were prepared using two microalgae biomass, Arthrospira platensis (Spirulina) and Chlorella vulgaris, and Dunaliella salina extract as ingredients at different mix levels of concentrations, 0.10%–0.10%–0.05% respectively, for plum; 0.04%–0.00%–0.01 respectively, for strawberry; 0.06%–0.04%–0.00% respectively, for apple and 0.00%–0.01%–0.04% respectively, for peach. Physicochemical, rheological, and textural parameters were evaluated. Substitution of sugar/fructose syrup in the jam’s preparation caused changes in pH values, solid soluble content, and rheological and textural properties compared to sugar jams. Using sugar or sweeteners as isomalt, stevia and sucralose and microalgae biomass or extract showed significant changes in colour coordinates, however, these differences were not perceptible by the human eye. Jams containing microalgae biomass-extract showed higher G', G'', G*, and η* values than their corresponding control samples. All the jams presented weak-gel characteristics, distinguishing fruit jams. However, the results of weak-gel model analysis suggest that the influence of the different ingredients in the food system depends not only on their concentration but also on the interactions in the gel structure. Strawberry and apple jams showed no significant differences between microalgae biomass-extract samples and control samples, for both sugar and no sugar added jams being the best-obtained samples.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2424
Author(s):  
Jan Martin Zepter ◽  
Jan Engelhardt ◽  
Tatiana Gabderakhmanova ◽  
Mattia Marinelli

Biogas plants may support the transformation towards renewable-based and integrated energy systems by providing dispatchable co-generation as well as opportunities for biogas upgrading or power-to-X conversion. In this paper, a simulation model that comprises the main dynamics of the internal processes of a biogas plant is developed. Based on first-order kinetics of the anaerobic digestion process, the biogas production of an input feeding schedule of raw material can be estimated. The output of the plant in terms of electrical and thermal energy is validated against empirical data from a 3-MW biogas plant on the Danish island of Bornholm. The results show that the model provides an accurate representation of the processes within a biogas plant. The paper further provides insights on the functioning of the biogas plant on Bornholm as well as discusses upgrading potentials of biogas to biomethane at the plant from an energy perspective.


2018 ◽  
Vol 38 (3) ◽  
pp. e13072
Author(s):  
Mehdi Rafiee ◽  
Elaheh Salehi ◽  
Khashayar Sharifi ◽  
Amir H. Mohammadi ◽  
Aliasghar Rohani ◽  
...  

2018 ◽  
Vol 7 (2) ◽  
pp. 93-100 ◽  
Author(s):  
Agus Haryanto ◽  
Sugeng Triyono ◽  
Nugroho Hargo Wicaksono

The efficiency of biogas production in semi-continuous anaerobic digester is influenced by several factors, among other is loading rate. This research aimed at determining the effect of hydraulic retention time (HRT) on the biogas yield. Experiment was conducted using lab scale self-designed anaerobic digester of 36-L capacity with substrate of a mixture of fresh cow dung and water at a ratio of 1:1. Experiment was run with substrate initial amount of 25 L and five treatment variations of HRT, namely 1.31 gVS/L/d (P1), 2.47 gVS/L/d (P2), 3.82 gVS/L/d (P3), 5.35 gVS/L/d (P4) and 6.67 gVS/L/d (P5). Digester performance including pH, temperature, and biogas yield was measured every day. After stable condition was achieved, biogas composition was analyzed using a gas chromatograph. A 10-day moving average analysis of biogas production was performed to compare biogas yield of each treatment. Results showed that digesters run quite well with average pH of 6.8-7.0 and average daily temperature 28.7-29.1. The best biogas productivity (77.32 L/kg VSremoval) was found in P1 treatment (organic loading rate of 1.31 g/L/d) with biogas yield of 7.23 L/d. With methane content of 57.23% treatment P1 also produce the highest methane yield. Biogas production showed a stable rate after the day of 44. Modified Gompertz kinetic equation is suitable to model daily biogas yield as a function of digestion time.Article History: Received March 24th 2018; Received in revised form June 2nd 2018; Accepted June 16th 2018; Available onlineHow to Cite This Article: Haryanto, A., Triyono, S., and Wicaksono, N.H. (2018) Effect of Loading Rate on Biogas Production from Cow Dung in A Semi Continuous Anaerobic Digester. Int. Journal of Renewable Energy Development, 7(2), 93-100.https://doi.org/10.14710/ijred.7.2.93-100


Sign in / Sign up

Export Citation Format

Share Document