scholarly journals Energy Consumption Analysis for Vehicle Production through a Material Flow Approach

Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2396 ◽  
Author(s):  
Fernando Enzo Kenta Sato ◽  
Toshihiko Nakata

The aim of this study is to comprehensively evaluate the energy consumption in the automotive industry, clarifying the effect of its productive processes. For this propose, the material flow of the vehicles has been elaborated, from mining to vehicle assembly. Initially, processes where each type of material was used, and the relationship between them, were clarified. Subsequently, material flow was elaborated, while considering materials input in each process. Consequently, the consumption of energy resources (i.e., oil, natural gas, coal, and electricity) was calculated. Open data were utilized, and the effects on the Japanese vehicle market were analyzed as a case study. Our results indicate that the energy that is required for vehicle production is 41.8 MJ/kg per vehicle, where mining and material production processes represent 68% of the total consumption. Moreover, 5.23 kg of raw materials and energy resources are required to produce 1 kg of vehicle. Finally, this study proposed values of energy consumption per mass of part produced, which can be used to facilitate future material and energy analysis for the automotive industry. Those values can be adopted and modified as necessary, allowing for possible changes in future premises to be incorporated.

2006 ◽  
Vol 10 (4) ◽  
pp. 229-237
Author(s):  
Jeremija Jevtic ◽  
Radenko Gligorijevic ◽  
Djuro Borak

Total consumption of all types of energies is rather high nowadays with constant tendency of increasing. Transport section is one of the highest consumers of energy obtained from fossil fuels. It is absolutely clear that the reduction of energy consumption and the protection of environment - exhaust emission reduction, i. e. cleaner air, will be one of the main tasks of automotive industry in the first decades of the 21st century. In spite of its superiority over the petrol engine in respect of the fuel consumption, a diesel engine "suffers" from the increased exhaust emission, particles and NOx first of all and also from the noise and vibrations. The paper gives a review of fuel efficiency of conventional design tractors diesel engines in relation to new design. .


Author(s):  
Bo Zhang ◽  
Qiang Lu ◽  
Zheng Shen ◽  
Yaokun Yang ◽  
Yunlin Liang

Based on the localized data of environmental load, this study has established the life cycle assessment (LCA) model of battery electric passenger vehicle (BEPV) that be produced and used in China, and has evaluated the energy consumption and greenhouse gases (GHGs) emission during vehicle production and operation. The results show that the total energy consumption and GHG emissions are 438GJ and 37,100kg (in terms of CO2 equivalent) respectively. The share of GHG emissions in total emissions at the production stage is 24.6%, and 75.4% GHG emissions are contributed by the operational stage. The main source of energy consumption and GHG emissions at vehicle production stage is the extraction and processing of raw materials. The GHG emissions of raw materials production accounts for 75.0% in the GHG emissions of vehicle production and 18.0% in the GHG emissions of full life cycle. The scenario analysis shows that the application of recyclable materials, power grid GHG emission rates and vehicle energy consumption rates have significant influence on the carbon emissions in the life cycle of vehicle. Replacing primary metals with recycled metals can reduce GHG emissions of vehicle production by about 7.3%, and total GHG emissions can be reduced by about 1.8%. For every 1% decrease in GHG emissions per unit of electricity, the GHG emissions of operation stage will decrease by about 0.9%; for every 1.0% decrease in vehicle energy consumption rate, the total GHG emissions decrease by about 0.8%. Therefore, developing clean energy, reducing the proportion of coal power, optimizing the production of raw materials and increasing the application of recyclable materials are effective ways to improve the environmental performance of BEPV.


2021 ◽  
Vol 2021 (2) ◽  
pp. 44-52
Author(s):  
G.O. Kuts ◽  
◽  
O.I. Teslenko ◽  

The perspective development of ferrous metallurgy of Ukraine for the period up to 2040 is considered. This development will take place due to structural changes of production schemes and technological measures with more effective characteristics of energy resources, energy carriers, and raw materials that directly influence the energy intensity of metallurgical products. The existing energy intensity calculations techniques were advanced and the total technological energy intensity of ferrous metallurgy products was calculated. Comparison of indicators of total technological energy intensity of final products of ferrous metallurgy (rolled metal) showed that rolled products produced by the latest energy-efficient technological schemes, which are projected to be implemented by 2040, will reduce total technological energy intensity up to 20% less than similar technological schemes used since 2017. For example, the total technological energy consumption of rolled billets of oxygen-converter steel will decrease by 17.2% (in terms of physical volume in the forecasted 2040 will be 862.293 kg c.e./t compared to the base 2017 – 1042.044 kg c.e./t), scrap process steel by 8.9% (respectively 923.999 kg c.e./t and 1014.120 kg c.e./t) and electric arc steel by 20% (703.292 kg c.e./t and 878.913 kg c.e./t). Regarding coke production, the total technological energy consumption of coke is projected to decrease by 24.0%: in 2040 it will be 210.040 kg c.e./t (in the base year 2017 it is equal to 244.585 kg c.e./t), and coke oven gas by 16.0%. , 4% (respectively 33.468 kg c.e./t and 38.72 kg c.e./t). The analysis of the role of components of energy intensity of products, namely for such products as iron ore, blast furnace coke, coke oven gas, and pig iron was made. The main components are energy resources, the share of which in the energy intensity of products is from 60 to 90%, and for other products, it is a raw material, the shares of which are within the same ranges. The main component in the structure of the formation of the total technological energy consumption of rolled products is the initial energy consumption of raw materials, the value of which is in the range of 90–92%. Keywords: technological energy intensity, structural changes, technological measures, energy resources, raw materials, pig iron, steel, rolled products


2013 ◽  
Vol 4 (2) ◽  
pp. 151-156 ◽  
Author(s):  
G. Kozma ◽  
E. Molnár ◽  
K. Czimre ◽  
J. Pénzes

Abstract In our days, energy issues belong to the most important problems facing the Earth and the solution may be expected partly from decreasing the amount of the energy used and partly from the increased utilisation of renewable energy resources. A substantial part of energy consumption is related to buildings and includes, inter alia, the use for cooling/heating, lighting and cooking purposes. In the view of the above, special attention has been paid to minimising the energy consumption of buildings since the late 1980s. Within the framework of that, the passive house was created, a building in which the thermal comfort can be achieved solely by postheating or postcooling of the fresh air mass without a need for recirculated air. The aim of the paper is to study the changes in the construction of passive houses over time. In addition, the differences between the geographical locations and the observable peculiarities with regard to the individual building types are also presented.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1800
Author(s):  
Linfei Hou ◽  
Fengyu Zhou ◽  
Kiwan Kim ◽  
Liang Zhang

The four-wheeled Mecanum robot is widely used in various industries due to its maneuverability and strong load capacity, which is suitable for performing precise transportation tasks in a narrow environment. While the Mecanum wheel robot has mobility, it also consumes more energy than ordinary robots. The power consumed by the Mecanum wheel mobile robot varies enormously depending on their operating regimes and environments. Therefore, only knowing the working environment of the robot and the accurate power consumption model can we accurately predict the power consumption of the robot. In order to increase the applicable scenarios of energy consumption modeling for Mecanum wheel robots and improve the accuracy of energy consumption modeling, this paper focuses on various factors that affect the energy consumption of the Mecanum wheel robot, such as motor temperature, terrain, the center of gravity position, etc. The model is derived from the kinematic and kinetic model combined with electrical engineering and energy flow principles. The model has been simulated in MATLAB and experimentally validated with the four-wheeled Mecanum robot platform in our lab. Experimental results show that the accuracy of the model reached 95%. The results of energy consumption modeling can help robots save energy by helping them to perform rational path planning and task planning.


2021 ◽  
Vol 13 (14) ◽  
pp. 7572
Author(s):  
Gigliola D’Angelo ◽  
Marina Fumo ◽  
Mercedes del Rio Merino ◽  
Ilaria Capasso ◽  
Assunta Campanile ◽  
...  

Demolition activity plays an important role in the total energy consumption of the construction industry in the European Union. The indiscriminate use of non-renewable raw materials, energy consumption, and unsustainable design has led to a redefinition of the criteria to ensure environmental protection. This article introduces an experimental plan that determines the viability of a new type of construction material, obtained from crushed brick waste, to be introduced into the construction market. The potential of crushed brick waste as a raw material in the production of building precast products, obtained by curing a geopolymeric blend at 60 °C for 3 days, has been exploited. Geopolymers represent an important alternative in reducing emissions and energy consumption, whilst, at the same time, achieving a considerable mechanical performance. The results obtained from this study show that the geopolymers produced from crushed brick were characterized by good properties in terms of open porosity, water absorption, mechanical strength, and surface resistance values when compared to building materials produced using traditional technologies.


2021 ◽  
Vol 13 (13) ◽  
pp. 7328
Author(s):  
Saeed Solaymani

Iran, endowed with abundant renewable and non-renewable energy resources, particularly non-renewable resources, faces challenges such as air pollution, climate change and energy security. As a leading exporter and consumer of fossil fuels, it is also attempting to use renewable energy as part of its energy mix toward energy security and sustainability. Due to its favorable geographic characteristics, Iran has diverse and accessible renewable sources, which provide appropriate substitutes to reduce dependence on fossil fuels. Therefore, this study aims to examine trends in energy demand, policies and development of renewable energies and the causal relationship between renewable and non-renewable energies and economic growth using two methodologies. This study first reviews the current state of energy and energy policies and then employs Granger causality analysis to test the relationships between the variables considered. Results showed that renewable energy technologies currently do not have a significant and adequate role in the energy supply of Iran. To encourage the use of renewable energy, especially in electricity production, fuel diversification policies and development program goals were introduced in the late 2000s and early 2010s. Diversifying energy resources is a key pillar of Iran’s new plan. In addition to solar and hydropower, biomass from the municipal waste from large cities and other agricultural products, including fruits, can be used to generate energy and renewable sources. While present policies indicate the incorporation of sustainable energy sources, further efforts are needed to offset the use of fossil fuels. Moreover, the study predicts that with the production capacity of agricultural products in 2018, approximately 4.8 billion liters of bioethanol can be obtained from crop residues and about 526 thousand tons of biodiesel from oilseeds annually. Granger’s causality analysis also shows that there is a unidirectional causal relationship between economic growth to renewable and non-renewable energy use. Labor force and gross fixed capital formation cause renewable energy consumption, and nonrenewable energy consumption causes renewable energy consumption.


Sign in / Sign up

Export Citation Format

Share Document