scholarly journals Microgrid Fault Detection and Classification: Machine Learning Based Approach, Comparison, and Reviews

Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3460 ◽  
Author(s):  
Shahriar Rahman Fahim ◽  
Subrata K. Sarker ◽  
S. M. Muyeen ◽  
Md. Rafiqul Islam Sheikh ◽  
Sajal K. Das

Accurate fault classification and detection for the microgrid (MG) becomes a concern among the researchers from the state-of-art of fault diagnosis as it increases the chance to increase the transient response. The MG frequently experiences a number of shunt faults during the distribution of power from the generation end to user premises, which affects the system reliability, damages the load, and increases the fault line restoration cost. Therefore, a noise-immune and precise fault diagnosis model is required to perform the fast recovery of the unhealthy phases. This paper presents a review on the MG fault diagnosis techniques with their limitations and proposes a novel discrete-wavelet transform (DWT) based probabilistic generative model to explore the precise solution for fault diagnosis of MG. The proposed model is made of multiple layers with a restricted Boltzmann machine (RBM), which enables the model to make the probability reconstruction over its inputs. The individual RBM layer is trained with an unsupervised learning approach where an artificial neural network (ANN) algorithm tunes the model for minimizing the error between the true and predicted class. The effectiveness of the proposed model is studied by varying the input signal and sampling frequencies. A level of considered noise is added with the sample data to test the robustness of the studied model. Results prove that the proposed fault detection and classification model has the ability to perform the precise diagnosis of MG faults. A comparative study among the proposed, kernel extreme learning machine (KELM), multi KELM, and support vector machine (SVM) approaches is studied to confirm the robust superior performance of the proposed model.

2014 ◽  
Vol 20 (1) ◽  
pp. 65-75 ◽  
Author(s):  
Ashkan Moosavian ◽  
Hojat Ahmadi ◽  
Babak Sakhaei ◽  
Reza Labbafi

Purpose – The purpose of this paper is to develop an appropriate approach for detecting unbalanced fault in rotating machines using KNN and SVM classifiers. Design/methodology/approach – To fulfil this goal, a fault diagnosis approach based on signal processing, feature extraction and fault classification, was used. Vibration signals were acquired from a designed experimental system with three conditions, namely, no load, balanced load and unbalanced load. FFT technique was applied to transform the vibration signals from time-domain into frequency-domain. In total, 29 feature parameters were extracted from FFT amplitude of the signals. SVM and KNN were employed to classify the three different conditions. The performances of the two classifiers were obtained under different values of their parameter. Findings – The experimental results show the potential application of SVM for machine fault diagnosis. Practical implications – The results demonstrate that the proposed approach can be used effectively for detecting unbalanced condition in rotating machines. Originality/value – In this paper, an intelligent approach for unbalanced fault detection was proposed based on supervised learning method. Also, a performance comparison was made between KNN and SVM in fault classification. In addition, this approach gave a high level of classification accuracy. The proposed intelligent approach can be used for other mechanical faults.


2011 ◽  
Vol 66-68 ◽  
pp. 1982-1987
Author(s):  
Wei Niu ◽  
Guo Qing Wang ◽  
Zheng Jun Zhai ◽  
Juan Cheng

The vibration signals of rotating machinery in operation consist of plenty of information about its running condition, and extraction and identification of fault signals in the process of speed change are necessary for the fault diagnosis of rotating machinery. This paper improves DDAG classification method and proposes a new fault diagnosis model based on support vector machine to solve the problem of restricting the rotating machinery fault intelligent diagnosis due to the lack of fault data samples. The testing results demonstrate that the model has good classification precision and can correctly diagnose faults.


Author(s):  
Wuqiang Liu ◽  
Jinxing Shen ◽  
Xiaoqiang Yang

The support vector machine (SVM) does not have a fixed parameter selection method and the manual selection of parameters is difficult to determine the validity, which affects the accuracy of recognition. simultaneously, The existing coarse-grained approach cannot effectively analyze the high-frequency components of time series. In view of the shortcomings of the above method, we put forward a new technique of rolling bearings for fault detection, which combines wavelet packet dispersion entropy (WPDE) and artificial fish swarm algorithm (AFSA) optimize support vector machines (AFSA-SVM). First of all, wavelet packet is devoted to decompose the original vibration signal into components of different frequency bands. Secondly, the dispersion entropy (DE) are calculated for each of the obtained frequency band components to acquire more comprehensive and complete fault information. Afterward, Input feature samples into the SVM model for training, and AFSA is used to optimize the parameters of SVM to obtain the optimal value so as to establish the best classification model. Finally, the prepared test set is input into AFSA-SVM for fault classification. The achievement of bearing detection experiments show that this approach can accurately and quickly identify fault types.


2010 ◽  
Vol 33 ◽  
pp. 450-453 ◽  
Author(s):  
Jie Zhao ◽  
Chun Hua Li

According to the characteristics of gear vibration noise large and fault diagnosis complex, the paper proposes the method of gear fault classification based on wavelet analysis - Support Vector Machines (SVM). This method effectively eliminates the noise interference of the gear signals. The classification model of gear diagnosis applicable to small samples is established and the result of simulation shows that the model can correctly realize gear fault.


2013 ◽  
Vol 325-326 ◽  
pp. 660-664
Author(s):  
Ye Zhou ◽  
Shu Tang ◽  
Luo Ping Pan ◽  
Ping Ping Li

In this paper, shaft monitoring data in condition monitoring system of hydropower units was used to build the fault classification model based on the least square support vector machine (LS-SVM). By the wavelet packet signal decomposition for unit vibration signal, setting the signal energy components as the study sample, learning of fault diagnosis classifier was conducted, to achieve the diagnosis of common faults in shaft running of hydropower unit.


Author(s):  
Zhenhua Li ◽  
Junjie Cheng ◽  
A. Abu-Siada

Background: Winding deformation is one of the most common faults that an operating power transformer experiences over its operational life. Thus it is essential to detect and rectify such faults at early stages to avoid potential catastrophic consequences to the transformer. At present, methods published in the literature for transformer winding fault diagnosis are mainly focused on identifying fault type and quantifying its extent without giving much attention to the identification of fault location. Methods: This paper presents a method based on a genetic algorithm and support vector machine (GA-SVM) to improve the faults’ classification of power transformers in terms of type and location. In this regard, a sinusoidal sweep signal in the frequency range of 600 kHz to 1MHz is applied to one terminal of the transformer winding. A mathematical index of the induced current at the head and end of the transformer winding under various fault conditions is used to extract unique features that are fed to a support vector machine (SVM) model for training. Parameters of the SVM model are optimized using a genetic algorithm (GA). Results : The effectiveness of mathematical indicators to extract fault type characteristics and the proposed fault classification model for fault diagnosis is demonstrated through extensive simulation analysis for various transformer winding faults at different locations. Conclusion : The proposed model can effectively identify different fault types and determine their location within the transformer winding, and the diagnostic rate of the fault type and fault location are 100% and 90%, respectively.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248515
Author(s):  
Ke Luo ◽  
Yingying Jiao

The purposes are to meet the individual needs of leather production, improve the efficiency of leather cutting, and increase the product’s competitiveness. According to the existing problems in current leather cutting systems, a Fault Diagnosis (FD) method combining Convolutional Neural Network (CNN) and the Support Vector Machine (SVM) of Gray Wolf Optimizer (GWO) is proposed. This method first converts the original signal into a scale spectrogram and then selects the pre-trained CNN model, AlexNet, to extract the signal scale spectrogram’s features. Next, the Principal Component Analysis (PCA) reduces the obtained feature’s dimensionality. Finally, the normalized data are input into GWO’s SVM classifier to diagnose the bearing’s faults. Results demonstrate that the proposed model has higher cutting accuracy than the latest fault detection models. After model optimization, when c is 25 and g is 0.2, the model accuracy can reach 99.24%, an increase of 66.96% compared with traditional fault detection models. The research results can provide ideas and practical references for improving leather cutting enterprises’ process flow.


2021 ◽  
Vol 2125 (1) ◽  
pp. 012004
Author(s):  
Juanni Li ◽  
Jun Shao

Abstract Monitoring the working status of the sucker rod pump is an important part in petroleum engineering. With the development of artificial intelligence technology, more methods have been applied to the fault diagnosis of rod pumping systems. An evolutional fault diagnosis method based on Support Vector Machine (SVM) in sucker rod pumping systems is proposed. Fourier descriptors and Light Field compression algorithm are used in this method to extract the graphic features of the indicator diagram. SVM is used to build fault classification model. This method is verified experimentally through data of indicator diagrams and the results show that it has a shorter training time and higher accuracy.


Author(s):  
Setti Suresh ◽  
◽  
Srinivas M ◽  
Naidu VPS ◽  
◽  
...  

The gearbox is one of the critical subsystems in any rotating machinery, which plays a significant role in machine-driven power transmission in terms of change in speed and torque. It plays a vital role in patching different industrial functionalities. The advent of developing different gear technologies and the requirement to fulfil the desired mechanical benefits lead to add more importance to the gearbox health condition monitoring from various types of fault occurrences at an earlier stage. This study presents the vibration analysis of gearbox fault diagnosis using discrete wavelet transform (DWT) and statistical features. It is observed that, using wavelet reconstruction in the fault diagnosis better fault classification is achieved. The fault diagnosis has presented with an emphasis in time-domain followed by two different approaches. The approach-1 is illustrated as windowing of raw signal, feature extraction and feature classification using support vector machine (SVM). In the approach-2, after windowing the raw signal - each window of original vibration signal has converted into wavelet coefficients reconstructed signals (without leaving the time domain) using discrete wavelet transform (DWT) at different levels of decomposition followed by approach-1. The fault diagnostic accuracy of SVM is presented with 100 Monte-Carlo -runs to validate the consistency in the accomplished result. By observing the success rates in two approaches, it is clear that approach-2 with wavelet coefficient’s reconstructed signal is providing better classification accuracy, which can be practically deployed to diagnose the gearbox fault.


2020 ◽  
Vol 23 (4) ◽  
pp. 274-284 ◽  
Author(s):  
Jingang Che ◽  
Lei Chen ◽  
Zi-Han Guo ◽  
Shuaiqun Wang ◽  
Aorigele

Background: Identification of drug-target interaction is essential in drug discovery. It is beneficial to predict unexpected therapeutic or adverse side effects of drugs. To date, several computational methods have been proposed to predict drug-target interactions because they are prompt and low-cost compared with traditional wet experiments. Methods: In this study, we investigated this problem in a different way. According to KEGG, drugs were classified into several groups based on their target proteins. A multi-label classification model was presented to assign drugs into correct target groups. To make full use of the known drug properties, five networks were constructed, each of which represented drug associations in one property. A powerful network embedding method, Mashup, was adopted to extract drug features from above-mentioned networks, based on which several machine learning algorithms, including RAndom k-labELsets (RAKEL) algorithm, Label Powerset (LP) algorithm and Support Vector Machine (SVM), were used to build the classification model. Results and Conclusion: Tenfold cross-validation yielded the accuracy of 0.839, exact match of 0.816 and hamming loss of 0.037, indicating good performance of the model. The contribution of each network was also analyzed. Furthermore, the network model with multiple networks was found to be superior to the one with a single network and classic model, indicating the superiority of the proposed model.


Sign in / Sign up

Export Citation Format

Share Document