scholarly journals Trade in the Carbon-Constrained Future: Exploiting the Comparative Carbon Advantage of Swedish Trade

Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3613
Author(s):  
Hana Nielsen ◽  
Astrid Kander

This paper introduces a new concept of comparative carbon advantage as a potential climate mitigation tool. According to the concept, welfare gains in terms of reduced global CO2 emissions can be achieved by exploiting cross-country sectoral differences in carbon intensity and decarbonized electricity system. The paper empirically tests the concept by utilizing annual data of Sweden between 1995 and 2008. Overall, the results show that Sweden contributed nearly 590 million tons of potential CO2 emissions savings through its exports by having an efficient and low-carbon production and electricity system. This total amount of 590 million tons of CO2 emissions relates to the total savings made if the same amount and composition of Swedish exports was produced using the world average technology. Furthermore, the contribution of Sweden’s low carbon electricity generation was over 34% of the total savings, of which some 20% were direct exports of electricity and 80% was electricity embodied in exported products. This research provides a critical understanding of the impact of efficient production and low carbon electricity in generating relative comparative carbon advantage—a policy relevant aspect for the increasingly globalized, and carbon-constrained, world.

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 812
Author(s):  
Mariola Piłatowska ◽  
Andrzej Geise

This study explores the impact of clean energy and non-renewable energy consumption on CO2 emissions and economic growth within two phases (formative and expansion) of renewable energy diffusion for three selected countries (France, Spain, and Sweden). The vector autoregression (VAR) model is estimated on the basis of annual data disaggregated into quarterly data. The Granger causality results reveal distinctive differences in the causality patterns across countries and two phases of renewables diffusion. Clean energy consumption contributes to a decline of emissions more clearly in the expansion phase in France and Spain. However, this effect seems to be counteracted by the increases in emissions due to economic growth and non-renewable energy consumption. Therefore, clean energy consumption has not yet led to a decoupling of economic growth from emissions in France and Spain; in contrast, the findings for Sweden evidence such a decoupling due to the neutrality between economic growth and emissions. Generally, the findings show that despite the enormous growth of renewables and active mitigation policies, CO2 emissions have not substantially decreased in selected countries or globally. Focused and coordinated policy action, not only at the EU level but also globally, is urgently needed to overhaul existing fossil-fuel economies into low-carbon economies and ultimately meet the relevant climate targets.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4648
Author(s):  
Zhipeng Tang ◽  
Ziao Mei ◽  
Jialing Zou

The carbon intensity of China’s resource-based cities (RBCs) is much higher than the national average due to their relatively intensive mode of development. Low carbon transformation of RBCs is an important way to achieve the goal of reaching the carbon emissions peak in 2030. Based on the panel data from 116 RBCs in China from 2003 to 2018, this study takes the opening of high-speed railway (HSR) lines as a quasi-experiment, using a time-varying difference-in-difference (DID) model to empirically evaluate the impact of an HSR line on reducing the carbon intensity of RBCs. The results show that the opening of an HSR line can reduce the carbon intensity of RBCs, and this was still true after considering the possibility of problems with endogenous selection bias and after applying the relevant robustness tests. The opening of an HSR line is found to have a significant reducing effect on the carbon intensity of different types of RBC, and the decline in the carbon intensity of coal-based cities is found to be the greatest. Promoting migration of RBCs with HSR lines is found to be an effective intermediary way of reducing their carbon intensity.


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3098
Author(s):  
Ritter ◽  
Meyer ◽  
Koch ◽  
Haller ◽  
Bauknecht ◽  
...  

In order to achieve a high renewable share in the electricity system, a significant expansion of cross-border exchange capacities is planned. Historically, the actual expansion of interconnector capacities has significantly lagged behind the planned expansion. This study examines the impact that such continued delays would have when compared to a strong interconnector expansion in an ambitious energy transition scenario. For this purpose, scenarios for the years 2030, 2040, and 2050 are examined using the electricity market model PowerFlex EU. The analysis reveals that both CO2 emissions and variable costs of electricity generation increase if interconnector expansion is delayed. This effect is most significant in the scenario year 2050, where lower connectivity leads roughly to a doubling of both CO2 emissions and variable costs of electricity generation. This increase results from a lower level of European electricity trading, a curtailment of electricity from a renewable energy source (RES-E), and a corresponding higher level of conventional electricity generation. Most notably, in Southern and Central Europe, less interconnection leads to higher use of natural gas power plants since less renewable electricity from Northern Europe can be integrated into the European grid.


2020 ◽  
Vol 37 (02) ◽  
pp. 2050003
Author(s):  
Jiaping Xie ◽  
Jing Li ◽  
Ling Liang ◽  
Xu Fang ◽  
Guang Yang ◽  
...  

Carbon emissions reduction has become a frequently discussed topic in industry and academia. However, how can reduction effects be enhanced with dominant brand and downstream manufacturer? This paper incorporates emissions reduction into a green supply chain which considers consumers’ low-carbon preference behavior and government intensity regulations, in order to discuss the impacts of consumers’ environmental awareness and government constraints on optimal emissions reduction and profit, respectively. The paper first constructs three reduction models on the basis of reality: independent reduction by manufacturer, contractual reduction by brand and collaborative reduction by both. Then it concludes the optimal decisions and compare the models. The results show that both the profits and emissions reduction will be decreased with the strengthened carbon intensity constraint, but the cost-sharing contract can mitigate this negative effect on dominant brand and society. Meanwhile, the acceptable range of cost-sharing ratio will be smaller with a lower cost coefficient of emissions reduction and a higher consumers’ preference. Furthermore, government should design the incentive method or regulate the carbon market to improve the social welfare level. Lastly, a numerical study is conducted, the impact of several key factors on supply chain performance and model selection are presented for management decisions.


Author(s):  
Boxiao Chen ◽  
Xiuli Chao ◽  
Yan Fu ◽  
Margaret Strumolo ◽  
Michael A. Tamor

Both automakers and electricity generators are facing increasingly more stringent greenhouse gas (GHG) emission targets. With the introduction of plug-in hybrid and electric vehicles, the transportation and electricity generation sectors become connected. This provides an opportunity for both sectors to work jointly to achieve cost efficient reduction of CO2 emissions. Due to the low cost and low carbon content of natural gas (NG), NG enabled vehicles are drawing increasing attention. With GHG targets rapidly decreasing, how to judiciously choose among plug-in hybrid vehicles, electric vehicles, NG-enabled vehicles, and gasoline vehicles to save societal cost is worth serious consideration. On the other hand, gasoline and NG prices play an important role in this decision-making process. In order to estimate the impact of gasoline and NG prices and quantify the benefit of the collaboration between automakers and electricity generators, an optimization model is developed to evaluate the total societal cost and CO2 emissions for both sectors. Various scenario analyses are conducted to understand the cost and capacity planning differences when gasoline and NG prices vary while the two sectors can work jointly or independently to meet the CO2 emission constraints. These results help us understand the impact of gasoline and NG prices in achieving GHG reduction targets for the two major sectors of CO2 emissions in the United States.


2020 ◽  
Vol 11 (1) ◽  
pp. 67-81
Author(s):  
Denizhan Guven ◽  
M. Özgür Kayalica ◽  
Gülgün Kayakutlu

This paper aims to analyze the impact of energy consumption, economic structure, and manufacturing output on the CO2 emissions of East European countries by applying the Structural Time Series Model (STSM). Several explanatory factors are used to construct the model using annual data of the 1990–2017 period. The factors are: total primary energy supply, GDP per capita and manufacturing value added, and, finally, a stochastic Underlying Emission Trend (UET). The significant effects of all variables on CO2 emissions are detected. Based on the estimated functions, CO2 emissions of Belarus, Ukraine, Romania, Russia, Serbia, and Hungary will decrease, by 2027, to 53.2 Mt, 103.2 Mt, 36.1 Mt, 1528.2 Mt, 36 Mt, and 36.1 Mt, respectively. Distinct from other countries, CO2 emissions of Poland will extend to 312.2 Mt in 2027 due to the very high share of fossil-based supply (i.e., coal and oil) in Poland. The results also indicate that the most forceful factor in CO2 emissions is the total primary energy supply. Furthermore, for Poland, Romania, Hungary, and Belarus, the long-term impact of economic growth on CO2 emissions is negative, while it is positive for Russia, Ukraine, and Serbia. The highest long-term manufacturing value-added elasticity of CO2 emissions is calculated for Serbia and Belarus.


Author(s):  
Abdulkadir BEKTAŞ

In recent decades, greenhouse gas (GHG) emissions have been a critical priority of global environmental policy. The leading cause of the increase in GHG triggering global warming in the atmosphere is the continuously growing demand for universal energy due to population and economic growth. Energy efficiency and reduction of CO2 emissions in highly-energy consuming sectors of Turkey are critical in deciding a low-carbon transition. In this study, the change of energy-related CO2 emissions in Turkey’s energy-intensive four sectors from 1998 to 2017 is analyzed based on the Logarithmic Mean Divisia Index (LMDI) method. It is used to decompose CO2 equivalent emissions changes in these sectors into five driving forces; changes in economic activity, activity mix, energy intensity, energy mix, and emission factors. Analytical results indicate that economic activity is a vital decisive factor in determining the change in CO2 emissions as well as sectoral energy intensity. The activity effect has raised CO2 emissions, while energy intensity has decreased. This method indicates that the impact of the energy intensity could be the first key determinant of GHG emissions. Turkey's efforts to be taken in these sectors in adopting low carbon growth policies and reducing energy-related emissions to tackle climate change are clarified in detail.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2124 ◽  
Author(s):  
Mariola Piłatowska ◽  
Andrzej Geise ◽  
Aneta Włodarczyk

This study examines the relationship between renewable and nuclear energy consumption, carbon dioxide emissions and economic growth by using the Granger causality and non-linear impulse response function in a business cycle in Spain. We estimate the threshold vector autoregression (TVAR) model on the basis of annual data from the period 1970–2018, which are disaggregated into quarterly data to obtain robust empirical results through avoiding a sample size problem. Our analysis reveals that economic growth and CO2 emissions are positively correlated during expansions but not during recessions. Moreover, we find that rising nuclear energy consumption leads to decreased CO2 emissions during expansions, while the impact of increasing renewable energy consumption on emissions is negative but insignificant. In addition, there is a positive feedback between nuclear energy consumption and economic growth, but unidirectional positive causality running from renewable energy consumption to economic growth in upturns. Our findings do indicate that both nuclear and renewable energy consumption contribute to a reduction in emissions; however, the rise in economic activity, leading to a greater increase in emissions, offsets this positive impact of green energy. Therefore, a decoupling of economic growth from CO2 emissions is not observed. These results demand some crucial changes in legislation targeted at reducing emissions, as green energy alone is insufficient to reach this goal.


Processes ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 923 ◽  
Author(s):  
Mihail Busu

Low carbon emissions have a great importance in our life. The increasing importance of carbon emission levels have attracted the interests of researchers and academics in the field. In this article, a panel data econometric model is developed to measure the relationship between renewable energy, energy productivity, population, urbanization, motorization, and Gross Domestic Product (GDP) per capita and their impacts on carbon dioxide CO2 emissions. Data used in this study was collected from the European Statistical Office (EUROSTAT) and five statistical hypotheses were tested and validated through a multilinear regression model using the Econometric Views (Eviews) 10.0 statistical software. The Hausman test was used to choose between a model with fixed effects and a model with random effects, and the variance inflection factor (VIF) was used to test the collinearity between the independent variables. The author’s findings indicate that renewable energy at the European Union (EU) level has a positive impact on low-carbon emissions. It was found that a 1% increase in renewable energy consumption would reduce the CO2 emissions by 0.11 million tons, while population growth and urbanization degree add more restrictions to the econometric equation of the impact on carbon emissions.


2019 ◽  
Vol 11 (19) ◽  
pp. 5260 ◽  
Author(s):  
Mihail Busu

Low carbon emission has a major positive impact on our society. Due to the importance of reducing carbon emission levels, factors that contribute significantly towards reducing carbon emission levels have attracted the interest of academics and researchers in the field. In this paper, the author develops a multiple linear regression analysis to examine the relationship between renewable energy consumption, biofuel production, resources productivity, bioenergy productivity, the level of urbanization and population and their impact on total carbon dioxide (CO2) emissions. Data was collected from the European Statistical Office (EUROSTAT) and four statistical hypotheses were validated through a regression model with panel data using the statistical software EViews 11. The study was conducted for 27 European Union (EU) countries during 2008 to 2017. The author’s findings indicate that renewables have a direct and positive influence on the levels of CO2 emissions, as opposed to population growth and urbanization. These findings suggest that public policy should be directed towards increasing the use of renewables in EU countries, while the level of urbanization and the population growth add more restrictions in the modelling equation of the impact on CO2 emissions.


Sign in / Sign up

Export Citation Format

Share Document