scholarly journals Experimental Study on the Performance of an SI Engine Fueled by Waste Plastic Pyrolysis Oil–Gasoline Blends

Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4196
Author(s):  
Khairil ◽  
Teuku Meurah Indra Riayatsyah ◽  
Samsul Bahri ◽  
Sarwo Edhy Sofyan ◽  
Jalaluddin Jalaluddin ◽  
...  

Pyrolyzed waste plastic-based green fuel has been reported to be used as an alternate fuel for diesel engines. Some of the main challenges for implementing this in current automotive technology include evaluating engine performance, emission, noise vibration harshness (NVH), and knock characteristics of this fuel. This study focuses on the engine performance of poly-ethylene terephthalate (PET)-based waste plastic oil (WPO) at varying engine speed conditions. The pyrolysis of mixed-waste plastic was carried out at 300 °C in a fixed-bed reactor. Physicochemical properties such as viscosity, density, calorific value, sulfur, and research octane number (RON) of the plastic fuel and its blends with gasoline were analyzed using ASTM standard test methods. The WPO was blended with two different types of gasoline (RON88 and RON90) at 10, 20, and 30%, and was tested in a spark-ignition (SI) engine. The experimental results showed that different WPO–gasoline blends can be used in an SI engine without any engine modifications, and the performance indicators for different blends were found to be close to that of pure gasoline. The brake power and brake specific fuel consumption (BSFC) were found to be 4.1 kW and 0.309 kg/kW h, respectively. The 10% WPO and 90% RON90 blend produced optimal engine performance at 3500 rpm.

Author(s):  
M. Sigit Cahyono ◽  
Ucik Ika Fenti

The objective of the research was to investigate the influence of heating rate and temperature in the reactor on the yield and properties of pyrolysis oil obtained from waste plastic bag, that is considered as low-density polyethylene (LDPE). The experiments were performed in fixed bed reactor equipped with a steam atomizing burner, a temperature controller, and a condenser. Approximately, the amount of ten kilograms of waste plastic bag loaded into the reactor chamber and then pyrolyzed using the temperature between 250 and 450°C and heating rates of 5 to 15°C/min. The results showed that as the oil yield decreased, the heating rate increased. Alternatively, the oil yield increased with temperature and the wax content decreases as the temperature increases. The highest quantity of pyrolysis oil was produced from waste plasctic bag is 45%, in the temperature 450<sup>o</sup>C and the heating rate 15°C/min, with wax content of 25%, solid char of 12 % and non-condensable gas of 41%. The physical properties of oil were evaluated and compared to those of diesel oil. The analysis results showed that the oil product’s properties from pyrolysis of the waste plastic bag in temperature 450<sup>0</sup>C, were relatively closer to those of diesel oil with caloric value 11,043 kcal/kg, specific gravity of 0.812, kinematic viscosity 2.80 mm<sup>2</sup>/s, and flash point of 27<sup>o</sup>C.


2018 ◽  
Vol 141 (4) ◽  
Author(s):  
S. P. Venkatesan ◽  
P. N. Kadiresh

This study attempts to identify the optimum dosing level of aqueous aluminum oxide nanofluid in diesel to improve combustion and engine performance and also to overcome the engine emission issues especially, the oxide of nitrogen, smoke, and the particulate matter. The aqueous aluminum oxide (aluminum oxide nanoparticle aqueous 5 wt % suspension) is used as a nanofluid. The dosing level of nanofluid is varied from 30 cc to 60 cc in steps of 10 cc for the performance study. Fuel blend properties such as calorific value, density, kinematic viscosity, and flash point are determined using ASTM standard test methods. Among all blends, the D+50AN showed a maximum improvement of about 5.9% in brake thermal efficiency (BTE) and remarkable reduction in NOx, smoke, HC, and CO as 15.6%, 22.34%, 31.82%, and 13.79%, respectively, at maximum rated power output.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3837
Author(s):  
Mohammad I. Jahirul ◽  
Farhad M. Hossain ◽  
Mohammad G. Rasul ◽  
Ashfaque Ahmed Chowdhury

Utilising pyrolysis as a waste tyre processing technology has various economic and social advantages, along with the fact that it is an effective conversion method. Despite extensive research and a notable likelihood of success, this technology has not yet seen implementation in industrial and commercial settings. In this review, over 100 recent publications are reviewed and summarised to give attention to the current state of global tyre waste management, pyrolysis technology, and plastic waste conversion into liquid fuel. The study also investigated the suitability of pyrolysis oil for use in diesel engines and provided the results on diesel engine performance and emission characteristics. Most studies show that discarded tyres can yield 40–60% liquid oil with a calorific value of more than 40 MJ/kg, indicating that they are appropriate for direct use as boiler and furnace fuel. It has a low cetane index, as well as high viscosity, density, and aromatic content. According to diesel engine performance and emission studies, the power output and combustion efficiency of tyre pyrolysis oil are equivalent to diesel fuel, but engine emissions (NOX, CO, CO, SOX, and HC) are significantly greater in most circumstances. These findings indicate that tyre pyrolysis oil is not suitable for direct use in commercial automobile engines, but it can be utilised as a fuel additive or combined with other fuels.


2013 ◽  
Vol 873 ◽  
pp. 562-566 ◽  
Author(s):  
Juan Liu ◽  
Xia Li ◽  
Qing Jie Guo

Chlorella samples were pyrolysed in a fixed bed reactor with γ-Al2O3 or ZSM-5 molecular sieve catalyst at 600°C. Liquid oil samples was collected from pyrolysis experiments in a condenser and characterized for water content, kinematic viscosity and heating value. In the presence of catalysts , gas yield decreased and liquid yield increased when compared with non-catalytic pyrolysis at the same temperatures. Moreover, pyrolysis oil from catalytic with γ-Al2O3 runs carries lower water content and lower viscosity and higher heating value. Comparison of two catalytic products, the results were showed that γ-Al2O3 has a higher activity than that of ZSM-5 molecular sieve. The acidity distribution in these samples has been measured by t.p.d, of ammonia, the γ-Al2O3 shows a lower acidity. The γ-Al2O3 catalyst shows promise for production of high-quality bio-oil from algae via the catalytic pyrolysis.


Author(s):  
D. Gowrishankar ◽  
G.D. Kumar ◽  
R. Prithviraj ◽  
V. Sanjay ◽  
D. Hariharan ◽  
...  

Plastics are an integral part of our lives and the production of plastics has drastically increased over the years, because of its vast range of applications and usage. Due to this the accumulation of waste plastics has also increased in time. The waste plastic generated in India is 15000 tons per day (as per survey). The breakdown of plastics requires around 500 years in the earth and these waste plastics affect the humans, animals, birds, earth and environment. The demand for conventional fuel has also increased lately and the quantity of this fuel reserve has decreased simultaneously. The extensive usage of the conventional fuels has paved the path for alternative ways for energy sources and alternate fuels. The extraction of waste plastic oil is obtained by the process of pyrolysis which is nothing but the thermochemical decomposition of organic matter without oxygen. The extracted plastic pyrolysis oil is then blended with diesel which helps in reducing the consumption of diesel fuel. Different blend ratios are prepared consisting of the extracted waste plastic pyrolysis oil and diesel fuel. These fuels are tested in the engine to understand the variation in the engine performance and emissions with the help of a gas analyser. By this way, the suitable blend ratio is selected for further works. This blend of fuel can exhibit high thermal efficiency and increases machine efficiency. The fuel does not emit sulphur dioxide (SO2) and the residue obtained is only 5 percent which is said to be carbon.


2021 ◽  
Vol 15 ◽  
pp. 49-52
Author(s):  
Özlem Onay

Co-pyrolysis of lignite and pistachio seed (CPLPS) under nitrogen gas was performed in a Heinze retort. The effect of pyrolysis temperature on product distribution of CPLPS investigated under heating rate of 10°Cmin-1 and blending ratio of 50(wt)%. Biomass is higher yield to be pyrolyzed than lignite and addition of biomass promotes the pyrolysis of lignite. In the range of the experimental conditions investigated the yield of the product is proportional to pyrolysis temperature. On the other hand, considerable synergetic effects were observed during the co-pyrolysis in a fixed bed reactor leading to increase in oil yield. Maximum pyrolysis oil yield of 27.2% was obtained at pyrolysis temperature of 550°C. The obtained oils are characterized by GC, and elemental analysis.


2021 ◽  
pp. 0958305X2110348
Author(s):  
Muhamad SN Awang ◽  
Nurin WM Zulkifli ◽  
Muhammad M Abbas ◽  
Syahir A Zulkifli ◽  
Mohd NAM Yusoff ◽  
...  

The main purposes of this research were to study the diesel engines' performance and emission characteristics of quaternary fuels, as well as to analyze their tribological properties. The quaternary comprised waste plastic pyrolysis oil, waste cooking oil biodiesel, palm oil biodiesel, and commercial diesel. Their compositions were analyzed by gas chromatography and mass spectrometry. By using mechanical stirring, four quaternary fuels with different compositions were prepared. Because Malaysia is expected to implement B30 (30% palm oil biodiesel content in diesel) in 2025, B30a (30% palm oil biodiesel and 70% commercial diesel) mixture was prepared as a reference fuel. In total, 5%, 10%, and 15% of each waste plastic pyrolysis oil and waste cooking oil biodiesel were mixed with palm oil biodiesel –commercial diesel mixture to improve fuel characteristics, engine performance, and emission parameters. The palm oil biodiesel of the quaternary fuel mixture was kept constant at 10%. The results were compared with B30a fuel and B10 (10% for palm oil biodiesel and 90% for diesel; commercial diesel). The findings indicated that compared with B30a fuel, the brake power and brake thermal efficiency of all quaternary fuel mixtures were increased by up to 2.78% and 9.81%, respectively. Compared with B30a, all quaternary fuels also showed up to a 6.31% reduction in brake-specific fuel consumption. Compared with B30a, the maximum carbon monoxide and carbon dioxide emissions of B40 (60% commercial diesel, 10% palm oil biodiesel, 15% waste plastic pyrolysis oil and 15% waste cooking oil biodiesel) quaternary fuel were reduced by 19.66% and 4.16%, respectively. The B20 (80% commercial diesel, 10% palm oil biodiesel, 5% waste plastic pyrolysis oil and 5% waste cooking oil biodiesel) quaternary blend showed a maximum reduction of 41.86% in hydrocarbon emissions collated to B30a. Compared with B10, the average coefficient of friction of the quaternary fuel mixture of B40, B30b (70% commercial diesel, 10% palm oil biodiesel, 10% waste plastic pyrolysis oil and 10% waste cooking oil biodiesel), and B20 were reduced by 3.01%, 1.20%, and 0.23%, respectively. Therefore, the quaternary blends show excellent utilization potential in diesel engine performance.


Author(s):  
Daniel L. Hertz

In the past ten years diesel engine performance has significantly increased in terms of kilowatts/litre (kW/L). These higher power density outputs create higher thermal loads on the cooling system and associated seals. While compatibility of elastomers in high temperature coolants has been studied and reported, the inevitable impact of thermal cycling on these elastomers is not well documented. This study examines the effects of thermal cycling in three general coolant categories on three different elastomers commonly considered for sealing hot engine coolants. The elastomers, by ASTM D1418 designation, are HNBR, FKM Type 2, and FEPM. The coolants are an organic acid technology (OAT) coolant, a propylene glycol premix coolant, and a corrosion inhibited de-ionized water. Normal service applications are characterized by an indefinite number of shutdowns and startups. Testing was designed to simulate such service. Aging periods incorporated ongoing 24 hour cycles: a 16 hour period to heat up and operate at 150°C, and an 8 hour period to cool off to ambient. O-rings, a common seal design, were subject to axial and radial deformation during testing. The o-rings’ sealing attributes were examined after four, ten, twenty, and forty cycles. Elastomeric properties were evaluated, before and after cyclical aging, in accordance with ASTM D1414-94 (“Standard Test Methods for Rubber O-rings”) and D412-06a (“Standard Test Methods for Vulcanized Rubber … - Tension”). Compressive stress relaxation (CSR) was evaluated using an in-house procedure, comporting with ASTM D6147-94.


2014 ◽  
Vol 984-985 ◽  
pp. 850-854 ◽  
Author(s):  
G. Antony Miraculas ◽  
N. Bose

Biofuels are renewable, nontoxic and ecofriendly fuels that can play an important role in automobile industries. They can successfully replace diesel fuel and helps in decreasing the import of crude oil. The discarded seed ofCalophyllunInophyllumwhich are planted in India mainly to prevent soil erosion is considered as the possible source for extracting biodiesel. Thetamanuoil extracted had a fatty acid value of 48 mg KOH/g, therefore a two stage esterification processes with acid and base catalyst were used for converting it into biodiesel. The fuel was then tested for properties such as viscosity, calorific value and carbon residue using standard test procedures and found to be analogous with diesel, which makes it possible to use this alternate fuel in the existing engine without any modification. A single cylinder, four stroke, constant speed, variable compression ratio, direct injection diesel engine developing 5KW power with provision for computerized data acquisition is used to evaluate the performance and emission characteristics. The test results were analyzed for biodiesel and its blends in comparison with standard diesel at different compression ratios (16:1, 18:1, 20:1 & 22:1). The performance and emission results of the diesel engine revealed that biodiesel can be blended with diesel up to 40% at an optimum CR of 20, in order to get improved performance and reduced emission.


Sign in / Sign up

Export Citation Format

Share Document