scholarly journals An Overview of Demand Response in Smart Grid and Optimization Techniques for Efficient Residential Appliance Scheduling Problem

Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4266
Author(s):  
Amit Shewale ◽  
Anil Mokhade ◽  
Nitesh Funde ◽  
Neeraj Dhanraj Bokde

Smart grid (SG) is a next-generation grid which is responsible for changing the lifestyle of modern society. It avoids the shortcomings of traditional grids by incorporating new technologies in the existing grids. In this paper, we have presented SG in detail with its features, advantages, and architecture. The demand side management techniques used in smart grid are also presented. With the wide usage of domestic appliances in homes, the residential users need to optimize the appliance scheduling strategies. These strategies require the consumer’s flexibility and awareness. Optimization of the power demand for home appliances is a challenge faced by both utility and consumers, particularly during peak hours when the consumption of electricity is on the higher side. Therefore, utility companies have introduced various time-varying incentives and dynamic pricing schemes that provides different rates of electricity at different times depending on consumption. The residential appliance scheduling problem (RASP) is the problem of scheduling appliances at appropriate periods considering the pricing schemes. The objectives of RASP are to minimize electricity cost (EC) of users, minimize the peak-to-average ratio (PAR), and improve the user satisfaction (US) level by minimizing waiting times for the appliances. Various methods have been studied for energy management in residential sectors which encourage the users to schedule their appliances efficiently. This paper aims to give an overview of optimization techniques for residential appliance scheduling. The reviewed studies are classified into classical techniques, heuristic approaches, and meta-heuristic algorithms. Based on this overview, the future research directions are proposed.

Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1043
Author(s):  
Abdallah A. Smadi ◽  
Babatunde Tobi Ajao ◽  
Brian K. Johnson ◽  
Hangtian Lei ◽  
Yacine Chakhchoukh ◽  
...  

The integration of improved control techniques with advanced information technologies enables the rapid development of smart grids. The necessity of having an efficient, reliable, and flexible communication infrastructure is achieved by enabling real-time data exchange between numerous intelligent and traditional electrical grid elements. The performance and efficiency of the power grid are enhanced with the incorporation of communication networks, intelligent automation, advanced sensors, and information technologies. Although smart grid technologies bring about valuable economic, social, and environmental benefits, testing the combination of heterogeneous and co-existing Cyber-Physical-Smart Grids (CP-SGs) with conventional technologies presents many challenges. The examination for both hardware and software components of the Smart Grid (SG) system is essential prior to the deployment in real-time systems. This can take place by developing a prototype to mimic the real operational circumstances with adequate configurations and precision. Therefore, it is essential to summarize state-of-the-art technologies of industrial control system testbeds and evaluate new technologies and vulnerabilities with the motivation of stimulating discoveries and designs. In this paper, a comprehensive review of the advancement of CP-SGs with their corresponding testbeds including diverse testing paradigms has been performed. In particular, we broadly discuss CP-SG testbed architectures along with the associated functions and main vulnerabilities. The testbed requirements, constraints, and applications are also discussed. Finally, the trends and future research directions are highlighted and specified.


2022 ◽  
pp. 506-528
Author(s):  
Sa'ed Abed ◽  
Areej Abdelaal ◽  
Amjad Gawanmeh

Energy demand has increased significantly in the recent years due to the emerging of new technologies and industries, in particular in the developing countries. This increase requires much more developed power grid system than the existing traditional ones. Smart grid (SG) offers a potential solution to this problem. Being one of the most needed and complex cyber-physical systems (CPS), SG has been addressed exhaustively by researchers, from different views and aspects. However, energy optimization yet needs much more studying and examination. Therefore, this chapter presents a comprehensive investigation and analysis of the state-of-the-art developments in SG as a CPS with emphasis on energy optimization techniques and challenges. It also surveys the main challenges facing the SG considering CPS factors and the remarkable accomplishments and techniques in addressing these challenges. In addition, the document contrasts between different techniques according to their efficiency, usage, and feasibility. Moreover, this work explores the most effective applications of the SG as a CPS.


2021 ◽  
Vol 12 (2) ◽  
pp. 63
Author(s):  
Keith Chamberlain ◽  
Salah Al-Majeed

Standardisation is fundamental to ensuring that new technologies develop and grow unhindered by manufacturer-led standards. Dismissing this vital issue can have a detrimental effect on society regarding adopting new technologies, particularly when government targets and regulations are crucial for their success. We have witnessed competing global industries struggle for dominance, such as Betamax versus VHS, where each had a similar user outcome, but the confusion of differing formats slowed growth. We analyse emerging standards for electric vehicle rapid charging and investigate how standardisation challenges affect stakeholders by reviewing the existing literature on single-mode and polymodal harmonisation. By assimilating existing evidence, we then develop a new understanding of the science behind multi-model standardisation (MMS) approaches. Our literature review reveals three primary standardisation issues: (1) charge connections, (2) car to charger communication protocols, and (3) charge payment methods. We then analyse each mode type’s benefit, observing how each example contributes to the overall outcome, and suggest that their impact depends on car to charger handshake timing and intuitive user interaction. Using a structured survey of 282 respondents, we analyse end-user satisfaction for factors affecting growth in the EV sector and compare these findings with the factors identified during our literature review. We consequently articulate a programme for future research to understand EV rapid charger standardisation better, proposing recommendations for vested stakeholders that embrace sponsors in societal, technological and scientific transformation.


Author(s):  
Sa'ed Abed ◽  
Areej Abdelaal ◽  
Amjad Gawanmeh

Energy demand has increased significantly in the recent years due to the emerging of new technologies and industries, in particular in the developing countries. This increase requires much more developed power grid system than the existing traditional ones. Smart grid (SG) offers a potential solution to this problem. Being one of the most needed and complex cyber-physical systems (CPS), SG has been addressed exhaustively by researchers, from different views and aspects. However, energy optimization yet needs much more studying and examination. Therefore, this chapter presents a comprehensive investigation and analysis of the state-of-the-art developments in SG as a CPS with emphasis on energy optimization techniques and challenges. It also surveys the main challenges facing the SG considering CPS factors and the remarkable accomplishments and techniques in addressing these challenges. In addition, the document contrasts between different techniques according to their efficiency, usage, and feasibility. Moreover, this work explores the most effective applications of the SG as a CPS.


2016 ◽  
Vol 8 (9) ◽  
pp. 929 ◽  
Author(s):  
Kris Kessels ◽  
Carolien Kraan ◽  
Ludwig Karg ◽  
Simone Maggiore ◽  
Pieter Valkering ◽  
...  

Many smart grid projects make use of dynamic pricing schemes aimed to motivate consumers to shift and/or decrease energy use. Based upon existing literature and analyses of current smart grid projects, this survey paper presents key lessons on how to encourage households to adjust energy end use by means of dynamic tariffs. The paper identifies four key hypotheses related to fostering demand response through dynamic tariff schemes and examines whether these hypotheses can be accepted or rejected based on a review of published findings from a range of European pilot projects. We conclude that dynamic pricing schemes have the power to adjust energy consumption behavior within households. In order to work effectively, the dynamic tariff should be simple to understand for the end users, with timely notifications of price changes, a considerable effect on their energy bill and, if the tariff is more complex, the burden for the consumer could be eased by introducing automated control. Although sometimes the mere introduction of a dynamic tariff has proven to be effective, often the success of the pricing scheme depends also on other factors influencing the behavior of end users. An important condition to make dynamic tariffs work is that the end users should be engaged with them.


2021 ◽  
Vol 23 (2) ◽  
Author(s):  
Christina Milioti ◽  
Konstantinos Kepaptsoglou ◽  
Konstantinos Kouretas ◽  
Eleni Vlahogianni

The taxi industry has changed dramatically during the last decade, as ride-sourcing applications, ride-sharing and alternative pricing schemes have emerged, either as complementing or competitive services and strategies. After some years of familiarity with such trends, it is interesting to explore where the taxi industry stands with respect to possible service innovations. This paper explores behavioral patterns of drivers, focusing on issues such as their preferred way of conducting business, and their views on introducing taxi-sharing and dynamic pricing. Data collected from a face-to-face questionnaire survey in Athens, Greece are exploited, and appropriate econometric models are developed for the purposes of the study. The analysis shows that young and/or educated drivers, as well as those who are familiar with new technologies are more willing to accept innovations in taxi services. Results from a stated choice experiment show that on average 3.5 euros is the extra charge that the taxi market would accept to offer a taxi-sharing service. However, results reveal that the value of taxi-sharing varies across different groups of drivers. Overall, findings indicate that in the years to come, competition by other services, (e.g. ridesharing) will force the taxi industry to adopt new models of operation and pricing.


Author(s):  
Hao Zhang ◽  
Fu Zhao ◽  
John W. Sutherland

The purpose of this paper is to demonstrate the feasibility of reducing electricity cost for a manufacturing factory through scheduling in a smart grid scenario while maintaining production throughput. Different from traditional rate structure, electricity price of smart grid is time varying and dependent on the total demand. The most common strategy for a factory to reduce electricity cost is to shift electricity usage from on-peak hours to off-peak hours. However, changes in manufacturing schedules affect power demand and electricity price. Moreover, a manufacturing process cannot be interrupted after being started. This dynamic coupling brings additional challenges to scheduling problem that is already NP-hard. In this paper, a time-indexed integer programming scheme is developed and implemented in General Algebraic Modeling System to solve the scheduling problem. To demonstrate the approach, a hypothetical region including power distribution/transmission system, residential/commercial buildings and a flow shop operating 8/16 working hours/day is considered. The operation of residential/commercial buildings is subject to time-of-use tariff and described in GridLAB-D. Simulation results show that the factory electricity cost is reduced by 2%–4% without any production loss. The results also suggest that in addition to residential/commercial buildings, it is possible to involve manufacturing facilities in demand-side management.


2020 ◽  
Vol 12 (23) ◽  
pp. 10160
Author(s):  
Adil Amin ◽  
Wajahat Ullah Khan Tareen ◽  
Muhammad Usman ◽  
Haider Ali ◽  
Inam Bari ◽  
...  

This study summarizes a critical review on EVs’ optimal charging and scheduling under dynamic pricing schemes. A detailed comparison of these schemes, namely, Real Time Pricing (RTP), Time of Use (ToU), Critical Peak Pricing (CPP), and Peak Time Rebates (PTR), is presented. Globally, the intention is to reduce the carbon emissions (CO2) has motivated the extensive practice of Electric Vehicles (EVs). The uncoordinated charging and uncontrolled integration however of EVs to the distribution network deteriorates the system performance in terms of power quality issues. Therefore, the EVs’ charging activity can be coordinated by dynamic electricity pricing, which can influence the charging activities of the EVs customers by offering flexible pricing at different demands. Recently, with developments in technology and control schemes, the RTP scheme offers more promise compared to the other types of tariff because of the greater flexibility for EVs’ customers to adjust their demands. It however involves higher degree of billing instability, which may influence the customer’s confidence. In addition, the RTP scheme needs a robust intelligent automation system to improve the customer’s feedback to time varying prices. In addition, the review covers the main optimization methods employed in a dynamic pricing environment to achieve objectives such as power loss and electricity cost minimization, peak load reduction, voltage regulation, distribution infrastructure overloading minimization, etc.


2011 ◽  
Vol 39 (4) ◽  
pp. 223-244 ◽  
Author(s):  
Y. Nakajima

Abstract The tire technology related with the computational mechanics is reviewed from the standpoint of yesterday, today, and tomorrow. Yesterday: A finite element method was developed in the 1950s as a tool of computational mechanics. In the tire manufacturers, finite element analysis (FEA) was started applying to a tire analysis in the beginning of 1970s and this was much earlier than the vehicle industry, electric industry, and others. The main reason was that construction and configurations of a tire were so complicated that analytical approach could not solve many problems related with tire mechanics. Since commercial software was not so popular in 1970s, in-house axisymmetric codes were developed for three kinds of application such as stress/strain, heat conduction, and modal analysis. Since FEA could make the stress/strain visible in a tire, the application area was mainly tire durability. Today: combining FEA with optimization techniques, the tire design procedure is drastically changed in side wall shape, tire crown shape, pitch variation, tire pattern, etc. So the computational mechanics becomes an indispensable tool for tire industry. Furthermore, an insight to improve tire performance is obtained from the optimized solution and the new technologies were created from the insight. Then, FEA is applied to various areas such as hydroplaning and snow traction based on the formulation of fluid–tire interaction. Since the computational mechanics enables us to see what we could not see, new tire patterns were developed by seeing the streamline in tire contact area and shear stress in snow in traction.Tomorrow: The computational mechanics will be applied in multidisciplinary areas and nano-scale areas to create new technologies. The environmental subjects will be more important such as rolling resistance, noise and wear.


Sign in / Sign up

Export Citation Format

Share Document