scholarly journals Study on Asymmetry Concentration of Mixed Oil in Products Pipeline

Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6398
Author(s):  
Yi Wang ◽  
Baoying Wang ◽  
Yang Liu ◽  
Yongtu Liang

Long-distance pipelines transporting multiple product oils such as gasoline, diesel and jet fuel, are important facilities for transporting fossil energy. One major concern in operation is the energy consumption of the pipeline. Energy consumption should be made optimized tracking batches of oils and cutting mixed oil, which requires an accurate prediction of concentration curve. In engineering, the concentration curve is usually assumed to be symmetric, but it is actually asymmetric, which may lead to estimation errors. Thus, the asymmetric concentration of mixed oil should be studied. The formation mechanism of the asymmetry of concentration curve has not been clearly clarified. A new method is proposed to measure the asymmetry of the concentration curve. Quantitative analysis is carried out for each factor on the asymmetry distribution of concentration curve. Based on the convection–diffusion equation, a modified oil-mixing model considering near wall adsorption effect is established. The model shows a good agreement with the Jablonski empirical formula. The error, compared with the experimental results, is less than 5%. The main findings are: (1) deviation volume has a negative correlation with pipe diameter and mean velocity; (2) adsorption coefficient has a greater impact on the length ratio of front and tail oil than diffusion coefficient; (3) the influence of all factors considered on the total length of mixed oil, front oil, tail oil and trail oil are basically the same; (4) if the limit of adsorption concentration in adsorption layer is 1, the reasonable value of adsorption coefficient a and b should be around 0.4. The results reveal the mechanism of asymmetric concentration of product oils and can provide practical suggestions to deal with the mixed oil.

2021 ◽  
Vol 205 ◽  
pp. 108787
Author(s):  
Lei Chen ◽  
Ziyun Yuan ◽  
JianXin Xu ◽  
Jingyang Gao ◽  
Yuhan Zhang ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 940
Author(s):  
Nicoleta Cristina Gaitan

Recent market studies show that the market for remote monitoring devices of different medical parameters will grow exponentially. Globally, more than 4 million individuals will be monitored remotely from the perspective of different health parameters by 2023. Of particular importance is the way of remote transmission of the information acquired from the medical sensors. At this time, there are several methods such as Bluetooth, WI-FI, or other wireless communication interfaces. Recently, the communication based on LoRa (Long Range) technology has had an explosive development that allows the transmission of information over long distances with low energy consumption. The implementation of the IoT (Internet of Things) applications using LoRa devices based on open Long Range Wide-Area Network (LoRaWAN) protocol for long distances with low energy consumption can also be used in the medical field. Therefore, in this paper, we proposed and developed a long-distance communication architecture for medical devices based on the LoRaWAN protocol that allows data communications over a distance of more than 10 km.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Qin Luo ◽  
Yufei Hou ◽  
Wei Li ◽  
Xiongfei Zhang

The urban rail transit line operating in the express and local train mode can solve the problem of disequilibrium passenger flow and space and meet the rapid arrival demand of long-distance passengers. In this paper, the Logit model is used to analyze the behavior of passengers choosing trains by considering the sensitivity of travel time and travel distance. Then, based on the composition of passenger travel time, an integer programming model for train stop scheme, aimed at minimizing the total passenger travel time, is proposed. Finally, combined with a certain regional rail line in Shenzhen, the plan is solved by genetic algorithm and evaluated through the time benefit, carrying capacity, and energy consumption efficiency. The simulation result shows that although the capacity is reduced by 6 trains, the optimized travel time per person is 10.34 min, and the energy consumption is saved by about 16%, which proves that the proposed model is efficient and feasible.


2019 ◽  
Vol 18 (3-2) ◽  
pp. 32-36
Author(s):  
Sh. Nurul Hidayah Wan Julihi ◽  
Ili Najaa Aimi Mohd Nordin ◽  
Muhammad Rusydi Muhammad Razif ◽  
Amar Faiz Zainal Abidin

Manual home energy meter reading and billing had caused inconvenience to the utility companies due to lack of manpower to read the energy meter at each household especially in the remote area, explains the increasing number of smart meter reader in the current market. Most of the smart meters in the market do not offer safety of privacy of consumers’ personal information since the data of electricity usage is being transferred digitally to the utility companies for more accurate bills calculation. Plus, the smart meter system is also a bit pricey to be installed in the rural area. Therefore, a private system that able to read energy consumption from a DC load and calculate its bill according to the tariff is proposed. Value of current is being obtained by using ACS712 current sensor. Hall circuit in the current sensor will converts magnetic field into a proportional voltage. The proposed system allows energy meter monitoring from an Android-based smartphone by displaying the real-time energy consumption and bill on Blynk application. An interface of Blynk is developed and connected to WiFi module, ESP8266 for visualizing the energy consumption of the DC load. In conclusion, the Energy Meter transmitter part able to read, calculate and transmit value of energy consumption and current bills to the Blynk application and Blynk application able to receive and show all the data transmitted at the present time. This system will be further improved for long-distance monitoring of electrical appliances used at home.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Guoxi He ◽  
Na Yang ◽  
Kexi Liao ◽  
Baoying Wang ◽  
Liying Sun

Cutting mixed oil in product pipelines has a great influence on the economy of the pipeline operation processes. The reasonable prediction of CDMS (the concentration distribution in the mixed segment) is important for cutting mixed segments. The classical model cannot explain the tailing phenomenon well which should not be neglected during operation processes. Based on Fick’s diffusion law, a new model for calculating the diffusion coefficient is proposed in this article, which originates from the essence of the diffusion phenomenon and considers the effects of both physical properties of oil products and the turbulence. At the same time, the dynamic fluid equilibrium model of CDMS near the pipe wall is given which has considered the adsorption effect of wall roughness. Based on these two factors, a novel numerical model for simulating the quantity of tailing oil is proposed, which is solved via the characteristic method and the finite difference method. The effects of different physical properties, as well as the adsorption, on both LFMS (the length of the front of the mixed segment) and LTMS (the length of the tail of the mixed segment), are analyzed. The comparison between the simulation results and the experimental data is utilized to validate the proposed numerical model. The simulation results show that the novel model can well describe the mixed segment tailing phenomenon and also explain the mixing essence of two miscible but dissimilar fluids in the pipeline more clearly. To sum up, this model can provide theoretical guidance for the prediction of CDMS and cutting process in practical operation processes; therefore, more economic benefit can be obtained.


2013 ◽  
Vol 13 (4) ◽  
pp. 200-205 ◽  
Author(s):  
Wang Tong ◽  
Wu Jiyi ◽  
Xu He ◽  
Zhu Jinghua ◽  
Charles Munyabugingo

In the routing protocol for wireless sensor network, the cluster size is generally fixed in clustering routing algorithm for wireless sensor network, which can easily lead to the “hot spot” problem. Furthermore, the majority of routing algorithms barely consider the problem of long distance communication between adjacent cluster heads that brings high energy consumption. Therefore, this paper proposes a new cross unequal clustering routing algorithm based on the EEUC algorithm. In order to solve the defects of EEUC algorithm, this algorithm calculating of competition radius takes the node’s position and node’s remaining energy into account to make the load of cluster heads more balanced. At the same time, cluster adjacent node is applied to transport data and reduce the energy-loss of cluster heads. Simulation experiments show that, compared with LEACH and EEUC, the proposed algorithm can effectively reduce the energy-loss of cluster heads and balance the energy consumption among all nodes in the network and improve the network lifetime


2004 ◽  
Vol 94 (3) ◽  
pp. 1061-1074 ◽  
Author(s):  
Rex S. Toh ◽  
Eunkyu Lee ◽  
Michael Y. Hu

Using a large real-life corporate database initially consisting of 3,990 heads of households stratified on the basis of various demographic and geographic variables, and whose communication activities (long distance telephone calls, letters, cards, and visits) were surveyed and monitored, this study investigated the direction as well as magnitude of estimation errors in survey responses and diary entries. Supporting the 1994 Fiedler and Armbruster psychometric formulation and conjecture, we show that estimation errors in reports of the frequency and duration of people's own communication activities exhibit a consistent tendency to regress toward the mean. This regressive estimation is greater for those who are further away from the mean in actual behavior and is proportional to the actual deviation from the mean. Furthermore, this regressive estimation is inversely related to the average frequency across behavioral categories. An important implication of our findings is that the distribution of estimated behavioral frequencies and durations appear more concentrated in surveys than they actually are in the general population, although the general shape of the distribution is unaffected.


2012 ◽  
Vol 253-255 ◽  
pp. 1619-1622
Author(s):  
Yan Hong Fan ◽  
Hua Kuang ◽  
Guo Xin Zhang ◽  
Ling Jiang Kong ◽  
Xing Li Li

Based on the NS model, an extended cellular automaton model is proposed to simulate complex characteristics and energy consumption of traffic flow with some slowdown sections on a highway by considering the number, speed limit and distribution of slowdown sections. The simulation results show that the present model can exhibit a multi-phase coexistence phenomenon, i.e., the freely moving phase, the maximum flow phase and the jamming phase coexist in traffic system. The fundamental diagram shows that the number of slowdown section has no influence on the mean velocity and flow. However, energy consumption increases with increase of the number of slowdown section at low density. In addition, it can be found that the speed limit and distribution of different slowdown sections have an important effect on traffic flow and energy consumption, and the underlying mechanism is also analyzed.


2021 ◽  
Author(s):  
William B Levy ◽  
Victoria G. Calvert

Darwinian evolution tends to produce energy-efficient outcomes. On the other hand, energy limits computation, be it neural and probabilistic or digital and logical. Taking a particular energy-efficient viewpoint, we define neural computation and make use of an energy-constrained, computational function. This function can be optimized over a variable that is proportional to the number of synapses per neuron. This function also implies a specific distinction between ATP-consuming processes, especially computation per se vs the communication processes including action potentials and transmitter release. Thus to apply this mathematical function requires an energy audit with a partitioning of energy consumption that differs from earlier work. The audit points out that, rather than the oft-quoted 20 watts of glucose available to the brain (1, 2), the fraction partitioned to cortical computation is only 0.1 watts of ATP. On the other hand at 3.5 watts, long-distance communication costs are 35-fold greater. Other novel quantifications include (i) a finding that the biological vs ideal values of neural computational efficiency differ by a factor of 108 and (ii) two predictions of N, the number of synaptic transmissions needed to fire a neuron (2500 vs 2000).Significance StatementEngineers hold up the human brain as a low energy form of computation. However from the simplest physical viewpoint, a neuron’s computation cost is remarkably larger than the best possible bits/J – off by a factor of 108. Here we explicate, in the context of energy consumption, a definition of neural computation that is optimal given explicit constraints. The plausibility of this definition as Nature’s perspective is supported by an energy-audit of the human brain. The audit itself requires certain novel perspectives and calculations revealing that communication costs are 35-fold computational costs.


Sign in / Sign up

Export Citation Format

Share Document