scholarly journals Horizontally Assembled Trapezoidal Piezoelectric Cantilevers Driven by Magnetic Coupling for Rotational Energy Harvester Applications

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 498
Author(s):  
Yonghyeon Na ◽  
Min-Seon Lee ◽  
Jung Woo Lee ◽  
Young Hun Jeong

Horizontally assembled trapezoidal piezoelectric cantilevers driven by magnetic coupling were fabricated for rotational energy harvester applications. A dodecagonal rigid frame with an attached array of six trapezoidal cantilevers served as a stator for electrical power generation. A rotor disk with six permanent magnets (PMs) interacted magnetically with the counterpart cantilever’s tip-mass PMs of the stator by rotational motion. Each trapezoidal piezoelectric cantilever beam was designed to operate in a transverse mode that utilizes a planar Ag/Pd electrode printed onto lead zirconate titanate (PZT) piezoelectric thick film. The optimized distance between a pair of PMs of the rotor and the stator was evaluated as approximately 10 mm along the same vertical direction to make the piezoelectric cantilever beam most deflectable without the occurrence of cracks. The theoretically calculated resistance torque was maximized at 46 mN·m for the optimized trapezoidal piezoelectric cantilever. The proposed energy harvester was also demonstrated for wind energy harvester applications. Its harvested output power reached a maximum of approximately 22 mW at a wind speed of 10 m/s under a resistive load of 30 kΩ. The output performance of the proposed energy harvester makes it possible to power numerous low-power applications such as smart sensor systems.

Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1206 ◽  
Author(s):  
Wei-Jiun Su ◽  
Jia-Han Lin ◽  
Wei-Chang Li

This paper investigates a piezoelectric energy harvester that consists of a piezoelectric cantilever and a tip mass for horizontal rotational motion. Rotational motion results in centrifugal force, which causes the axial load on the beam and alters the resonant frequency of the system. The piezoelectric energy harvester is installed on a rotational hub in three orientations—inward, outward, and tilted configurations—to examine their influence on the performance of the harvester. The theoretical model of the piezoelectric energy harvester is developed to explain the dynamics of the system and experiments are conducted to validate the model. Theoretical and experimental studies are presented with various tilt angles and distances between the harvester and the rotating center. The results show that the installation distance and the tilt angle can be used to adjust the resonant frequency of the system to match the excitation frequency.


2014 ◽  
Vol 14 (08) ◽  
pp. 1440021
Author(s):  
Xiaoling Bai ◽  
Yumei Wen ◽  
Ping Li ◽  
Jin Yang ◽  
Xiao Peng ◽  
...  

Cantilever beams have found intensive and extensive uses as underlying mechanisms for energy transduction in sensors as well as in energy harvesters. In magnetoelectric (ME) transduction, the underlying cantilever beam usually will undergo magnetic coupling effect. As the beam itself is either banded with magnetic transducer or magnets, the dynamic motion of the cantilever can be modified due to the magnetic force between the magnets and ME sensors. In this study, the dynamic response of a typical spiral cantilever beam with magnetic coupling is investigated. The spiral cantilever acts as the resonator of an energy harvester with a tip mass in the form of magnets, and a ME transducer is positioned in the air gap and interacts with the magnets. It is expected that this spiral configuration is capable of performing multiple vibration modes over a small frequency range and the response frequencies can be magnetically tunable. The experimental results show that the magnetic coupling between the magnets and the transducer plays a favorable role in achieving tunable resonant frequencies and reducing the frequency spacings. This will benefits the expansion of the response band of a device and is especially useful in energy harvesting.


2019 ◽  
Vol 83 (sp1) ◽  
pp. 976
Author(s):  
Ming Liu ◽  
Hengxu Liu ◽  
Hailong Chen ◽  
Yuanchao Chai ◽  
Liquan Wang

Author(s):  
Muturi G. Muriuki ◽  
William W. Clark

This paper presents the design and analysis of a cantilever beam resonator that is driven by a piezoelectric material. The beam is a bimorph structure with Lead Zirconate Titanate (PZT) and stainless steel or aluminum layers. The PZT layer is electroded in segments to form a sensor and actuator pair for feedback to drive the resonator. An additional PZT segment is used, in conjunction with a capacitive shunt circuit, to change the vibration frequency of the resonator. The study is based on an analytical model of the beam and experimental testing.


2021 ◽  
Vol 245 ◽  
pp. 114559
Author(s):  
Yee Yan Lim ◽  
Ricardo Vasquez Padilla ◽  
Andreas Unger ◽  
Rodrigo Barraza ◽  
Ahmed Mostafa Thabet ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8441
Author(s):  
Shao-En Chen ◽  
Ray-Yeng Yang ◽  
Zeng-Hui Qiu ◽  
Chia-Che Wu

In this study, a plucking-driven piezoelectric wave energy harvester (PDPWEH) consisted of a buoy, a gear train frequency up-conversion mechanism, and an array of piezoelectric cantilever beams was developed. The gear train frequency up-conversion mechanism with compact components included a rack, three gears, and a geared cam provide less energy loss to improve electrical output. Six individual piezoelectric composite beams were plucked by geared cam to generate electrical power in the array of piezoelectric cantilever beams. A sol-gel method was used to create the piezoelectric composite beams. To investigate PDPWEH, a mathematical model based on the Euler–Bernoulli beam theory was derived. The developed PDPWEH was tested in a wave flume. The wave heights were set to 100 and 75 mm, the wave periods were set to 1.0, 1.5, and 2.0 s. The maximum output voltage of the measured value was 12.4 V. The maximum RMS voltage was 5.01 V, which was measured by connecting to an external 200 kΩ resistive load. The maximum average electrical power was 125.5 μw.


Author(s):  
Ming Hui Yao ◽  
Wei Xia ◽  
Wei Zhang ◽  
Jian Yu Jiao

This paper presents a special piezoelectric energy harvester system which is obtained by separating the end of the upper piezoelectric layer of the traditional piezoelectric cantilever beam from its basic layer. A mass I is located at the end of the separated upper piezoelectric layer (SUPL), a mass II and a permanent magnet I are located at the end of the separated lower piezoelectric beam (SLPB) and a permanent magnet II is added in the opposite position of the permanent magnet I and they face each other with same polarities. A nonlinear magnetic force which can broaden the frequency bandwidth of the system is generated mutually on the two permanent magnets. Studies find that this special piezoelectric energy harvester has extremely high energy capture efficiency. In order to further explore the reason of high efficiency, experimental research on its dynamic behavior is carried out. The experimental results show that the vibrations of the SUPL and the SLPB are relatively simple. The dynamic behaviors of the SUPL, the SLPB and the unseparated part are different. The unseparated part of the piezoelectric shows relatively complex nonlinear phenomenon due to the interaction of nonlinear magnetic force and the collision. With the increase of the external excitation frequency, period doubling motion and almost periodic motion appear alternately.


2020 ◽  
Vol 36 (3) ◽  
pp. 557-577 ◽  
Author(s):  
Minghui Yao ◽  
Pengfei Liu ◽  
Li Ma ◽  
Hongbo Wang ◽  
Wei Zhang

Circuit World ◽  
2018 ◽  
Vol 44 (2) ◽  
pp. 78-86 ◽  
Author(s):  
Kirubaveni Savarimuthu ◽  
Radha Sankararajan ◽  
Gulam Nabi Alsath M. ◽  
Ani Melfa Roji M.

Purpose This paper aims to present the design of a cantilever beam with various kinds of geometries for application in energy harvesting devices with a view to enhance the harvested power. The cantilever beams in rectangular, triangular and trapezoidal geometries are simulated, designed and evaluated experimentally. A power conditioning circuit is designed and fabricated for rectification and regulation. Design/methodology/approach The analytical model based on Euler–Bernoulli beam theory is analyzed for various cantilever geometries. The aluminum beam with Lead Zirconate Titanate (PZT) 5H strip is used for performing frequency, displacement, strain distribution, stress and potential analysis. A comparative analysis is done based on the estimated performance of the cantilevers with different topologies of 4,500 mm3 volume. Findings The analysis shows the trapezoidal cantilever yielding a maximum voltage of 66.13 V at 30 Hz. It exhibits maximum power density of 171.29 W/mm3 at optimal resistive load of 330 kΩ. The generated power of 770.8 µW is used to power up a C-mote wireless sensor network. Originality/value This study provides a complete structural analysis and implementation of the cantilever for energy harvesting application, integration of power conditioning circuit with the energy harvester and evaluation of the designed cantilevers under various performance metrics.


Sign in / Sign up

Export Citation Format

Share Document