scholarly journals On the Retrofit of Existing Buildings with Aerogel Panels: Energy, Environmental and Economic issues

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1276
Author(s):  
Paola Marrone ◽  
Francesco Asdrubali ◽  
Daniela Venanzi ◽  
Federico Orsini ◽  
Luca Evangelisti ◽  
...  

Among the super insulating materials, aerogel has interesting properties: very low thermal conductivity and density, resistance to high temperatures and transparency. It is a rather expensive material, but incentives in the field can improve its economic attractiveness. Starting from this, the thermal behavior of a test building entirely insulated with aerogel panels was investigated through an extended experimental campaign. A dynamic simulation model of a case study building was generated to better comprehend the energy savings obtained through aerogel in terms of energy demand over a whole year. The investigation was completed by computing the carbon and energy payback times of various retrofit strategies through a life cycle assessment approach, as well as by a cost-benefit analysis through a probabilistic financial framework. Compared to conventional insulation materials, aerogel is characterized by a higher energy and carbon payback time, but it guarantees better environmental performance in the whole life cycle. From an economic-financial perspective, the aerogel retrofit is the best in the current tax incentive scenario. However, due to its higher lump-sum investment, aerogel’s net present value is very sensitive to tax deductions, and it is riskier than the best comparable materials in less favorable tax scenarios.

Author(s):  
Jana Korytárová ◽  
Barbora Pospíšilová

Investment decisions are at the core of any development strategy. Economic growth and welfare depend on productive capital, infrastructure, human capital, knowledge, total factor productivity and the quality of institutions. Decision-making process on the selection of suitable projects in the public sector is in some aspects more difficult than in the private sector. Evaluating projects on the basis of their financial profitability, where the basic parameter is the value of the potential profit, can be misleading in these cases. One of the basic objectives of the allocation of public resources is respecting of the 3E principle (Economy, Effectiveness, Efficiency) in their whole life cycle. The life cycle of the investment projects consists of four main phases. The first pre-investment phase is very important for decision-making process whether to accept or reject a public project for its realization. A well-designed feasibility study as well as cost-benefit analysis (CBA) in this phase are important assumptions for future success of the project. A future financial and economical CF which represent the fundamental basis for calculation of economic effectiveness indicators are formed and modelled in these documents. This paper deals with the possibility to calculate the financial and economic efficiency of the public investment projects more accurately by simulation methods used.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Cheng-Ting Hsu ◽  
Roman Korimara ◽  
Tsun-Jen Cheng

This paper presents a feasibility study of a large simulated stadium-scale photovoltaic generation system (PVGS) on a small island. Both the PVGS contribution to the energy demand on the island and its financial analysis were analysed in this study. The maximum allowable PVGS installation capacity is obtained by executing load flow analysis without violating the voltage magnitude and voltage variation ratio limits. However, the estimated power generation of PVGS is applied to know its impact on the power system according to the hourly solar irradiation and temperature. After that, the cost-benefit analysis of payback years (PBY) and net present value (NPV) method is derived considering the cash flow from utilities annual fuel and loss saving, the operation and maintenance (O&M) cost, and the capital investment cost. The power network in Kiribati (PUB DNST) is selected for study in this paper. The simulation results are very valuable and can be applied to the other small islands for reducing the usage of fossil fuel and greenhouse gas emissions.


2011 ◽  
pp. 57-78
Author(s):  
I. Pilipenko

The paper analyzes shortcomings of economic impact studies based mainly on input- output models that are often employed in Russia as well as abroad. Using studies about sport events in the USA and Olympic Games that took place during the last 30 years we reveal advantages of the cost-benefit analysis approach in obtaining unbiased assessments of public investments efficiency; the step-by-step method of cost-benefit analysis is presented in the paper as well. We employ the project of Sochi-2014 Winter Olympic and Paralympic Games in Russia to evaluate its efficiency using cost-benefit analysis for five accounts (areas of impact), namely government, households, environment, economic development, and social development, and calculate the net present value of the project taking into account its possible alternatives. In conclusion we suggest several policy directions that would enhance public investment efficiency within the Sochi-2014 Olympics.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1297
Author(s):  
Juntae Kim ◽  
Hyo-Dong Han ◽  
Wang Yeol Lee ◽  
Collins Wakholi ◽  
Jayoung Lee ◽  
...  

Currently, the pork industry is incorporating in-line automation with the aim of increasing the slaughtered pork carcass throughput while monitoring quality and safety. In Korea, 21 parameters (such as back-fat thickness and carcass weight) are used for quality grading of pork carcasses. Recently, the VCS2000 system—an automatic meat yield grading machine system—was introduced to enhance grading efficiency and therefore increase pork carcass production. The VCS2000 system is able to predict pork carcass yield based on image analysis. This study also conducted an economic analysis of the system using a cost—benefit analysis. The subsection items of the cost-benefit analysis considered were net present value (NPV), internal rate of return (IRR), and benefit/cost ratio (BC ratio), and each method was verified through sensitivity analysis. For our analysis, the benefits were grouped into three categories: the benefits of reducing labor costs, the benefits of improving meat yield production, and the benefits of reducing pig feed consumption through optimization. The cost-benefit analysis of the system resulted in an NPV of approximately 615.6 million Korean won, an IRR of 13.52%, and a B/C ratio of 1.65.


2021 ◽  
Vol 246 ◽  
pp. 114679
Author(s):  
Alexander Golberg ◽  
Mark Polikovsky ◽  
Michael Epstein ◽  
Petronella Margaretha Slegers ◽  
Dušan Drabik ◽  
...  

2021 ◽  
Author(s):  
Saptarshi Pal ◽  
Chengi Kuo

Abstract In the past 70 years the world has relied extensively for its energy needs based on hydrocarbons produced significantly offshore. In recent years many installations with fixed platforms and pipelines are reaching the end of their useful life and are required by law to be decommissioned and removed if an approved alternative use cannot be found. This process coincides with focus on decarbonization arising from global warming and climate change. The conventional way of decommissioning is to remove the structure and take it onshore for disposal. Such an activity costs around £28 million for smaller UKCS installations in the Southern North Sea. Possible alternative solutions include their use as a research-leisure complex and artificial reef. Such an approach would have less impact on the environment and it is therefore worthwhile to explore the feasibility of repurposing these decommissioned UKCS platforms. The paper begins by highlighting the background to UKCS offshore decommissioning and farming fish life-cycle. This is followed by a critical review of the three options of total and partial removals and leave-on-site. It is found that repurposing decommissioned platforms for aquaculture farm has not been given sufficient attention and thus offers scope for a project to explore the feasibility of such a solution. Existing offshore fish farming in various countries are examined before using a decision-making matrix to select the most suitable UKCS installation for conversion and this led to using a normally unattended gas platform for the case study. The focus for this paper is on design and operation of an unattended fish farm and its cost benefit analysis. The former covers fish cage selection, capacity calculation, fish handling procedures, fish feed characteristics, feed demand, designing feed logistics and storage system. The processing facilities are layout on two decks and power needs are generated using a hybrid system of diesel and Li-ion battery. The possibility of using renewable sources by connecting to wind energy grids was also considered. For the latter capital and operating expenditure, revenue generated and maintenance costs are estimated before performing net present value prediction of the profitability of the fish farm over 10 years with for example up to 8 cages and three discount rates. The main conclusions derived are: It is technically feasible to convert a decommissioned gas platform to a fish farm and the operation can be economic. However, liability transfer implications in a repurposed offshore decommissioned gas platforms to fish farms were not established to verify the project viability. The conversion of unattended offshore gas platforms in the UKCS to an automated offshore fish farm is a novel solution which has not been implemented in the North Sea before. The work will provide an economic and environmental friendly solution to decommissioning offshore platforms and provide with a possible profitable investment.


2016 ◽  
Vol 5 (4) ◽  
pp. 58
Author(s):  
Monika Ghimire ◽  
Art Stoecker ◽  
Tracy A. Boyer ◽  
Hiren Bhavsar ◽  
Jeffrey Vitale

<p class="sar-body"><span lang="EN-US">This study incorporates spatially explicit geographic information system and simulation models to develop an optimal irrigation system. The purpose of the optimized irrigation system was to save depleted ground water supplies. ArcGIS was used to calculate the area of potential irrigable soils, and EPANET (a hydrological simulation program) was used to calculate energy costs. Crop yield response functions were used to estimate the yield of cotton to the amount of irrigation and the accumulation of soil salinity over a 50-year period. Four irrigation designs (A, B, C, and D) were analyzed with different irrigation schedules.</span></p><p class="sar-body"><span lang="EN-US">Design A allowed all producers to irrigate simultaneously at 600 gallons per minute (gpm) or 2,271 liters per minute (lpm) while designs B and C divided the irrigable areas into two parts. Design D divided the areas into four parts to allow producers to irrigate one part at a time at 800 gpm (3,028 lpm). Irrigation scheduling not only lessened the water use and cost, but also amplified the profitability of the irrigation system. In design A, if all producers adopted 600 gpm (2,271 lpm) pivots and operated simultaneously, the cost of the 360,000 gpm (1363,000 lpm) pipeline would be prohibitive. In contrast, designs B, C, and D increased net benefits and lowered the breakeven price of cotton. The 50-year net present value for designs A, B, C, and D was profitable over 75, 70, 70, and 65 cents of cotton price per pound (454 g), respectively. Thus, this study endorses irrigation scheduling as a tool for efficient irrigation development and management, and increases water conservation.</span></p>


2014 ◽  
Vol 3 (5) ◽  
pp. 47
Author(s):  
Sanni Yaya ◽  
Xiaonan Li

This paper offers a general guide on how to conduct a proper economic analysis for community-based intervention projects. Identification and quantification of costs and benefits are the focus of the cost benefit analysis. We categorize costs and benefits from human and physical perspectives and pay special attention to the measures of saving human lives accompanied by the proposed calculation methods. We recommend net present value and benefit-cost ratio as the criteria to assess projects and highlight some challenges remaining in the analysis.


2019 ◽  
Vol 11 (4) ◽  
pp. 1038
Author(s):  
Fabio Zagonari

This paper combines the most popular tourism typologies or goals (i.e., RT, responsible tourism, to represent impact minimisation; ST, sustainable tourism, to represent welfare maximisation; AT, alternative tourism, to represent continuity maximisation) and decision-making methodologies (i.e., MCA, multi-criteria analysis; CBA, cost-benefit analysis; WLCA, weighted life-cycle assessment; MLCA, monetary life-cycle assessment) in a single dynamic framework to operationally match the former with the latter. Normative insights show that MCA and WLCA are most suitable for RT and AT, respectively, whereas CBA and MLCA are most suitable for ST. Management recommendations (i.e., if a wrong static instead of a right dynamic approach must be adopted due to a lack of data, once chosen a tourism typology or goal, ST is the best in terms of level, correlation and likelihood of errors) are provided, and policy recommendations (i.e., if a right dynamic approach is adopted, in choosing among tourism typologies or goals, AT is the best in terms of precaution, ST is the best in terms of correlation, and RT is the best in terms of risk of investments) are suggested for a case study characterized by negative environmental and cultural dynamics. Positive insights show that two and many papers have applied WLCA and MLCA, respectively, to RT, but they did not account for cultural features; many papers have applied CBA to ST, but only one paper applied MLCA; few and no papers have applied MCA and WLCA, respectively, to AT.


Sign in / Sign up

Export Citation Format

Share Document