scholarly journals Analysis of the Effects of the Location of Passive Control Devices on the Platform of a Floating Wind Turbine

Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2850
Author(s):  
Antonio Galán-Lavado ◽  
Matilde Santos

Floating offshore wind turbines (FOWT) are subjected to strong loads, mainly due to wind and waves. These disturbances cause undesirable vibrations that affect the structure of these devices, increasing the fatigue and reducing its energy efficiency. Among others, a possible way to enhance the performance of these wind energy devices installed in deep waters is to combine them with other marine energy systems, which may, in addition, improve its stability. The purpose of this work is to analyze the effects that installing some devices on the platform of a barge-type wind turbine have on the vibrations of the structure. To do so, two passive control devices, TMD (Tuned Mass Damper), have been installed on the platform of the floating device, with different positions and orientations. TMDs are usually installed in the nacelle or in the tower, which imposes space, weight, and size hard constraints. An analysis has been carried out, using the FAST software model of the NREL-5MW FOWT. The results of the suppression rate of the tower top displacement and the platform pitch have been obtained for different locations of the structural control devices. They have been compared with the system without TMD. As a conclusion, it is possible to say that these passive devices can improve the stability of the FOWT and reduce the vibrations of the marine turbine. However, it is indispensable to carry out a previous analysis to find the optimal orientation and position of the TMDs on the platform.

Author(s):  
Hyeonjeong Ahn ◽  
Hyunkyoung Shin

Abstract The area of renewable energy is expanding rapidly worldwide, with wind turbines being an example. In Korea, many researchers are conducting studies on floating offshore wind turbines (FOWTs) on areas with suitable wind resources. In particular, Ulsan, which is the site selected in this study, started research on the development of a 200-MW floating offshore wind farm. In this study, the references for upscaling are the 5-MW reference wind turbine of the National Renewable Energy Laboratory (NREL), and the OC4-DeepCwind semisubmersible type floating wind turbine. We upscaled the 5-MW wind turbine to a 10-MW FOWT by applying the appropriate scale ratio for each component of the turbine. We upscaled the specifications related to items such as the blades, hub, and nacelle using the power ratio. The mass of the blades was reduced by using carbon fiber-reinforced plastic (CFRP). We upscaled the specifications related to the tower using its deflection ratio, and the tower clearance criterion and the tower campbell diagram were used to confirm that the design is appropriate. We upscaled the specifications related to the platform using the upper structure mass ratio. The GZ curve of the platform was used to confirm the stability, and we used the air gap for safety. Three catenary type mooring lines were also designed. To understand the static response of the initial model of the 10-MW FOWT, a steady-state analysis was performed according to each wind speed. We followed the IEC and DNV standards, and we used NREL FAST in all simulations.


2021 ◽  
Vol 9 (5) ◽  
pp. 543
Author(s):  
Jiawen Li ◽  
Jingyu Bian ◽  
Yuxiang Ma ◽  
Yichen Jiang

A typhoon is a restrictive factor in the development of floating wind power in China. However, the influences of multistage typhoon wind and waves on offshore wind turbines have not yet been studied. Based on Typhoon Mangkhut, in this study, the characteristics of the motion response and structural loads of an offshore wind turbine are investigated during the travel process. For this purpose, a framework is established and verified for investigating the typhoon-induced effects of offshore wind turbines, including a multistage typhoon wave field and a coupled dynamic model of offshore wind turbines. On this basis, the motion response and structural loads of different stages are calculated and analyzed systematically. The results show that the maximum response does not exactly correspond to the maximum wave or wind stage. Considering only the maximum wave height or wind speed may underestimate the motion response during the traveling process of the typhoon, which has problems in guiding the anti-typhoon design of offshore wind turbines. In addition, the coupling motion between the floating foundation and turbine should be considered in the safety evaluation of the floating offshore wind turbine under typhoon conditions.


Author(s):  
H. K. Jang ◽  
H. C. Kim ◽  
M. H. Kim ◽  
K. H. Kim

Numerical tools for a single floating offshore wind turbine (FOWT) have been developed by a number of researchers, while the investigation of multi-unit floating offshore wind turbines (MUFOWT) has rarely been performed. Recently, a numerical simulator was developed by TAMU to analyze the coupled dynamics of MUFOWT including multi-rotor-floater-mooring coupled effects. In the present study, the behavior of MUFOWT in time domain is described through the comparison of two load cases in maximum operational and survival conditions. A semi-submersible floater with four 2MW wind turbines, moored by eight mooring lines is selected as an example. The combination of irregular random waves, steady currents and dynamic turbulent winds are applied as environmental loads. As a result, the global motion and kinetic responses of the system are assessed in time domain. Kane’s dynamic theory is employed to formulate the global coupled dynamic equation of the whole system. The coupling terms are carefully considered to address the interactions among multiple turbines. This newly developed tool will be helpful in the future to evaluate the performance of MUFOWT under diverse environmental scenarios. In the present study, the aerodynamic interactions among multiple turbines including wake/array effect are not considered due to the complexity and uncertainty.


2021 ◽  
Author(s):  
Lei Tan ◽  
Tomoki Ikoma ◽  
Yasuhiro Aida ◽  
Koichi Masuda

Abstract The barge-type foundation with moonpool(s) is a promising type of platform for floating offshore wind turbines, since the moonpool(s) could improve the hydrodynamic performance at particular frequencies and reduce the costs of construction. In this paper, the horizontal mean drift force and yaw drift moment of a barge-type platform with four moonpools are numerically and experimentally investigated. Physical model tests are carried out in a wave tank, where a 2MW vertical-axis wind turbine is modelled in the 1:100 scale. By varying the rotating speed of the turbine and the mass of the blades, the gyroscopic effects due to turbine rotations on the mean drift forces are experimentally examined. The wave diffraction and radiation code WAMIT is used to carry out numerical analysis of wave drift force and moment. The experimental results indicate that the influence of the rotations of a vertical-axis wind turbine on the sway drift force is generally not very significant. The predictions by WAMIT are in reasonable agreement with the measured data. Numerical results demonstrate that the horizontal mean drift force and yaw drift moment at certain frequencies could be reduced by moonpool(s).


2020 ◽  
Vol 8 (4) ◽  
pp. 253 ◽  
Author(s):  
Yapo Wang ◽  
Lixian Zhang ◽  
Constantine Michailides ◽  
Ling Wan ◽  
Wei Shi

Due to the energy crisis and greenhouse effect, offshore renewable energy is attracting increasing attention worldwide. Various offshore renewable energy systems, such as floating offshore wind turbines (FOWTs), and wave energy converters (WECs), have been proposed and developed so far. To increase power output and reduce related costs, a combined marine energy structure using FOWT and WEC technologies has been designed, analyzed and presented in the present paper. The energy structure combines a 5-MW braceless semisubmersible FOWT and a heave-type WEC which is installed on the central column of the semisubmersible. Wave power is absorbed by a power take-off (PTO) system through the relative heave motion between the central column of the FOWT and the WEC. A numerical model has been developed and is used to determine rational size and draft of the combined structure. The effects of different PTO system parameters on the hydrodynamic performance and wave energy production of the WEC under typical wave conditions are investigated and a preliminary best value for the PTO’s damping coefficient is obtained. Additionally, the effects of viscous modeling used during the analysis and the hydrodynamic coupling on the response of the combined structure are studied.


Author(s):  
Hyunseong Min ◽  
Cheng Peng ◽  
Fei Duan ◽  
Zhiqiang Hu ◽  
Jun Zhang

Wind turbines are popular for harnessing wind energy. Floating offshore wind turbines (FOWT) installed in relatively deep water may have advantages over their on-land or shallow-water cousins because winds over deep water are usually steadier and stronger. As the size of wind turbines becomes larger and larger for reducing the cost per kilowatt, it could bring installation and operation risks in the deep water due to the lack of track records. Thus, together with laboratory tests, numerical simulations of dynamics of FOWT are desirable to reduce the probability of failure. In this study, COUPLE-FAST was initially employed for the numerical simulations of the OC3-HYWIND, a spar type platform equipped with the 5-MW baseline wind turbine proposed by National Renewable Energy Laboratory (NREL). The model tests were conducted at the Deepwater Offshore Basin in Shanghai Jiao Tong University (SJTU) with a 1:50 Froude scaling [1]. In comparison of the simulation using COUPLE-FAST with the corresponding measurements, it was found that the predicted motions were in general significantly smaller than the related measurements. The main reason is that the wind loads predicted by FAST were well below the related measurements. Large discrepancies are expected because the prototype and laboratory wind loads do not follow Froude number similarity although the wind speed was increased (or decreased) in the tests such that the mean surge wind force matched that predicted by FAST at the nominal wind speed (Froude similarity) in the cases of a land wind turbine [1]. Therefore, an alternative numerical simulation was made by directly inputting the measured wind loads to COUPLE instead of the ones predicted by FAST. The related simulated results are much improved and in satisfactory agreement with the measurements.


2021 ◽  
Vol 11 (24) ◽  
pp. 11665
Author(s):  
Shi Liu ◽  
Yi Yang ◽  
Chao Wang ◽  
Yuangang Tu

Spar-type floating offshore wind turbines commonly vibrate excessively when under the coupling impact of wind and wave. The wind turbine vibration can be controlled by developing its mooring system. Thus, this study proposes a novel mooring system for the spar-type floating offshore wind turbine. The proposed mooring system has six mooring lines, which are divided into three groups, with two mooring lines in the same group being connected to the same fairlead. Subsequently, the effects of the included angle between the two mooring lines on the mooring-system’s performance are investigated. Then, these six mooring lines are connected to six independent fairleads for comparison. FAST is utilized to calculate wind turbine dynamic response. Wind turbine surge, pitch, and yaw movements are presented and analyzed in time and frequency domains to quantitatively evaluate the performances of the proposed mooring systems. Compared with the mooring system with six fairleads, the mooring system with three fairleads performed better. When the included angle was 40°, surge, pitch, and yaw movement amplitudes of the wind turbine reduced by 39.51%, 6.8%, and 12.34%, respectively, when under regular waves; they reduced by 56.08%, 25.00%, and 47.5%, respectively, when under irregular waves. Thus, the mooring system with three fairleads and 40° included angle is recommended.


2021 ◽  
Author(s):  
Luca Pustina ◽  
Claudio Pasquali ◽  
Jacopo Serafini ◽  
Claudio Lugni ◽  
Massimo Gennaretti

Abstract Among the renewable energy technologies, offshore wind energy is expected to provide a significant contribution for the achievement of the European Renewable Energy (RE) targets for the next future. In this framework, the increase of generated power combined with the alleviation of vibratory loads achieved by application of suitable advanced control systems can lead to a beneficial LCOE (Levelized Cost Of Energy) reduction. This paper defines a control strategy for increasing floating offshore wind turbine lifetime through the reduction of vibratory blade and hub loads. To this purpose a Proportional-Integral (PI) controller based on measured blade-root bending moment feedback provides the blade cyclic pitch to be actuated. The proportional and integral gain matrices are determined by an optimization procedure whose objective is the alleviation of the vibratory loads due to a wind distributed linearly on the rotor disc. This control synthesis process relies on a linear, state-space, reduced-order model of the floating offshore wind turbine derived from aero-hydroelastic simulations provided by the open-source tool OpenFAST. In addition to the validation of the proposed controller, the numerical investigation based on OpenFAST predictions examines also the corresponding control effort, influence on platform dynamics and expected blade lifetime extension. The outcomes show that, as a by-product of the alleviation of the vibratory out-of-plane bending moment at the blade root, significant reductions of both cumulative blade lifetime damage and sway and roll platform motion are achieved, as well. The maximum required control power is less than 1% of the generated power.


Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1185 ◽  
Author(s):  
Tom Salic ◽  
Jean Frédéric Charpentier ◽  
Mohamed Benbouzid ◽  
Marc Le Boulluec

The offshore wind resource has huge energy potential. However, wind turbine floating structures have to withstand harsh conditions. Strong wind and wave effects combine to generate vibrations, fatigue, and heavy loads on the structure and other elements of the wind turbine. These structural problems increase maintenance requirements and risk of failure, while reducing availability and energy production. Another challenge for wind energy is to reduce production costs in order to be competitive with other alternatives. From the control point of view, the objective of lowering costs can be achieved by operating the turbine close to its optimum point of operation under partial load, guaranteeing reliability by reducing structural loads and regulating the power generated in strong wind regimes. In this typical and challenging context, this paper proposes a critical state-of-the-art review, discussing challenges and trends on floating offshore wind turbines control.


Sign in / Sign up

Export Citation Format

Share Document