scholarly journals Deadbeat Predictive Current Control for Series-Winding PMSM Drive with Half-Bridge Power Module-Based Inverter

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4620
Author(s):  
Zhiping Dong ◽  
Chunhua Liu ◽  
Senyi Liu ◽  
Zaixin Song

Series-winding topology (SWT) could improve the DC-link voltage utilization, as open-winding topology does. Meanwhile, it can greatly reduce the number of power devices. Firstly, for the half-bridge power modules (HBPMs)-based inverter, an N-phase series-winding motor only requires N+1 HBPMs for driving. On the other hand, such SWT also brings new challenges to the drive system. A zero-sequence loop is introduced into the motor windings due to SWT. The generated zero-sequence current would degrade the total harmonic distortion of the phase currents and produce the additional torque ripple. Moreover, current sensors are typically integrated with the HBPMs. However, in SWT, their measured results are the leg currents of the inverter, not the phase currents of the motor, which is crucial to the motor control. Thus, this paper mainly focuses on the aforementioned problems in a three-phase series-winding permanent-magnet synchronous motor (TPSW-PMSM) drive with HBPM-based inverter. Firstly, to control the zero-sequence subspace, the voltage vector distribution of TPSW-PMSM is analyzed. In addition, two voltage vectors with zero-sequence components are selected to generate the zero-sequence voltage. Then, the phase currents are reconstructed according to the leg currents from the current sensors on HBPMs. Based on the above, the deadbeat predictive current control (DBPCC) scheme is proposed for a TPSW-PMSM drive with HBPM-based inverter. It provides the TPSW-PMSM drive with fast dynamic response and effective zero-sequence current suppression. Finally, both simulation and experimental results verify the feasibility and effectiveness of the proposed DBPCC scheme.

2020 ◽  
Vol 185 ◽  
pp. 01015
Author(s):  
Fusheng Wang ◽  
Sai Weng ◽  
Lizhong Ye ◽  
Tao Chen

In order to suppress the leakage current of the active neutral point clamed five-level (ANPC-5L) inverter, this paper proposes a novel low common-mode voltage (CMV) modulation strategy based on the space vector modulation thought. Only the 55 voltage vectors with low CMV amplitude instead of all 125 voltage vectors are utilized. The CMV amplitude is suppressed to one-twelfth of the DC bus voltage (Vdc). In the simplified five-level space vector diagram, “obtuse triangle” synthesis principle is used to control the CMV changes twice in each carrier cycle, and get lower output current total harmonic distortion (THD). According to the vector thought, a carrier implementation method based on zero sequence voltage injection and carrier splitting is proposed. This method simplifies the calculation and is easy to implement.Simulation results prove the correctness and feasibility of this low CMV modulation strategy.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 395
Author(s):  
Ipsita Mishra ◽  
Ravi Nath Tripathi ◽  
Vijay Kumar Singh ◽  
Tsuyoshi Hanamoto

In this paper, finite-set model-predictive control (FS-MPC) is inducted for a motor drive system. The dynamic response and multiple constraint handling nature of FS-MPC are the major factors that stand out among the controller family. However, for real-time implementation, the computational burden of FS-MPC is a primary concern. Due to the parallel processing nature and discrete nature of the hardware platform, the field-programmable gate array (FPGA) can be an alternative solution for the real-time implementation of the controller algorithm. The FPGA is capable of handling the computational requirements for FS-MPC implementation; however, the system development involves multiple steps that lead to a time-consuming debugging process. Moreover, specific hardware coding skill makes it more complex, corresponding to an increase in system complexity, which leads to a tedious task for the system development. This paper presents a FPGA-based implementation of the predictive current control of a permanent magnet synchronous motor (PMSM). FS-MPC of the PMSM drive system is designed and implemented using the digital model integration approach provided by the Xilinx system generator (XSG) and VIVADO platform. The step change in the load disturbance as well as the reference speed is considered for the analysis of the controller for the motor drive system. Moreover, the steady state error and harmonic distortion in the motor current is considered for an in-depth analysis of the system performance corresponding to different sampling frequencies.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1127 ◽  
Author(s):  
Guodong Sun ◽  
Guijie Yang ◽  
Yanyi Wang ◽  
Jianyong Su

In this paper, the decoupling matrix in a five-phase permanent magnet synchronous motor (FPMSM) is rebuilt and changed, according to different open-phase conditions, which complicate the switch and control algorithm. This paper proposes a unified fault-tolerant control strategy with decoupling transformation matrix, effectively suppressing the torque ripple for several open-phase faults. The current algorithms for different open-phase faults are demonstrated; torque ripple, especially, is analyzed with third harmonic magnetomotive force (MMF). The unified current control law is expressed with two adjustable coefficients, which are regulated for torque ripple compensation. As the current control equation remains unchanged, the fault-tolerant can smoothly switch from normal to fault condition, only with different coefficients. The proposed method with torque compensation (TC) can realize effective suppression of torque ripple. The decoupling relationship between open-phase control laws and fault-tolerant current is verified by simulation. The torque ripple of fault-tolerant and effect of torque compensation (TC) under all fault-tolerant conditions are simulated by finite element simulation. The stability of switching and correctness of torque compensation are verified by experiments.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 610
Author(s):  
Dong-Woo Nam ◽  
Kang-Been Lee ◽  
Hyun-Jo Pyo ◽  
Min-Jae Jeong ◽  
Seo-Hee Yang ◽  
...  

The spoke-type permanent magnet synchronous motor (PMSM), which is a general ferrite magnetic flux-concentrated motor, has a low portion of reluctance torque at the total torque magnitude. Therefore, as a way to increase the reluctance torque, there is a double-layer spoke-type PMSM that can maximize the difference in inductance between the d-axis and the q-axis. However, in the double-layer spoke-type PMSM, cogging torque, torque ripple, and total harmonic distortion (THD) increase with reluctance torque, which is the main cause of vibration and noise. In this paper, a method is proposed that provides the same effect as skew without dividing stages of the permanent magnet by dividing the core of the rotor into two types so that it is easy to manufacture according to the number of stages, unlike extant skew methods. Based on the method, the reduction in cogging torque and THD was verified by finite element analysis (FEA).


Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2406 ◽  
Author(s):  
Cezary Jędryczka ◽  
Dawid Danielczyk ◽  
Wojciech Szeląg

This paper deals with the torque ripple minimization method based on the modulation of the phase currents of the permanent-magnet synchronous motor (PMSM) drive. The shape of the supply current waveforms reducing the torque ripple of the machine considered was determined on the basis of finite element analysis (FEA). In the proposed approach, the machine is supplied by a six-leg inverter in order to allow for the injection of zero sequence current harmonics. Two test PMSMs with fractional-slot concentrated windings (FSCW) and surface-mounted permanent magnets (SPMs) have been examined as a case study problem. Wide-range fractional analyses were performed using developed numerical models of the electromagnetic field distribution in the considered machines. The results obtained show that the level of torque ripple in FSCW PMSMs can be effectively reduced by the modulation of the phase currents under the six-leg inverter supply.


Author(s):  
Youssef Ait El Kadi ◽  
◽  
Fatima Zahra Baghli ◽  
Yassine Lakhal

The paper focuses on an efficient method to compensate the harmonics and zero-sequence component caused by the variable unbalanced nonlinear loads. The studied compensator is based on the conventional Static Compensator (STATCOM) which is supplied by a photovoltaic generator rather than the storage passive components. That constitutes a Photovoltaic Static Compensator (PV-STATCOM). In addition to the active power production, this PV-STATCOM will improve the quality of the electric grid highly disturbed without any additional devices and costs. The used control strategy is based on the instantaneous power method and current control. The obtained results show the benefits of the photovoltaic active filter compensator to improve the energy quality. Specially, the Total Harmonic Distortion (THD) is decreased from 28.80 % to 2.03 %. The zero-sequence component of the load currents is reduced from 31.50 % to 4.26 %. The results prove also a high stabilization and limitation of the harmful repercussions of the compensator on the photovoltaic station and an automatic adapting to the solar variable radiation and to the unbalanced nonlinear load variations.


Sign in / Sign up

Export Citation Format

Share Document