scholarly journals Electromagnetic–Triboelectric Hybridized Nanogenerators

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6219
Author(s):  
Lin Xu ◽  
Md Al Mahadi Hasan ◽  
Heting Wu ◽  
Ya Yang

Since the triboelectric nanogenerator (TENG) was invented, it has received extensive attention from researchers. Among the many pieces of research based on TENG, the research of hybridized generators is progressing rapidly. In recent years, the research and application of the electromagnetic–triboelectric hybridized nanogenerator (EMG-TENG) have made great progress. This review mainly focuses on the latest research development of EMG-TENG and elaborates on the principles, materials, structure, and applications of EMG-TENG. In this paper, the microscopic charge transfer mechanism of TENG is explained by the most primitive friction electrification phenomenon and electrostatic induction phenomenon. The commonly used materials for fabricating TENG and the selection and modification methods of the materials are introduced. According to the difference in structure, EMG-TENG is divided into two categories: vibratory EMG-TENG and rotating EMG-TENG. The summary explains the application of EMG-TENG, including the energy supply and self-powered system of small electronic devices, EMG-TENG as a sensor, and EMG-TENG in wearable devices. Finally, based on summarizing previous studies, the author puts forward new views on the development direction of EMG-TENG.

Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 158
Author(s):  
Peng Huang ◽  
Dan-Liang Wen ◽  
Yu Qiu ◽  
Ming-Hong Yang ◽  
Cheng Tu ◽  
...  

In recent years, wearable electronic devices have made considerable progress thanks to the rapid development of the Internet of Things. However, even though some of them have preliminarily achieved miniaturization and wearability, the drawbacks of frequent charging and physical rigidity of conventional lithium batteries, which are currently the most commonly used power source of wearable electronic devices, have become technical bottlenecks that need to be broken through urgently. In order to address the above challenges, the technology based on triboelectric effect, i.e., triboelectric nanogenerator (TENG), is proposed to harvest energy from ambient environment and considered as one of the most promising methods to integrate with functional electronic devices to form wearable self-powered microsystems. Benefited from excellent flexibility, high output performance, no materials limitation, and a quantitative relationship between environmental stimulation inputs and corresponding electrical outputs, TENGs present great advantages in wearable energy harvesting, active sensing, and driving actuators. Furthermore, combined with the superiorities of TENGs and fabrics, textile-based TENGs (T-TENGs) possess remarkable breathability and better non-planar surface adaptability, which are more conducive to the integrated wearable electronic devices and attract considerable attention. Herein, for the purpose of advancing the development of wearable electronic devices, this article reviews the recent development in materials for the construction of T-TENGs and methods for the enhancement of electrical output performance. More importantly, this article mainly focuses on the recent representative work, in which T-TENGs-based active sensors, T-TENGs-based self-driven actuators, and T-TENGs-based self-powered microsystems are studied. In addition, this paper summarizes the critical challenges and future opportunities of T-TENG-based wearable integrated microsystems.


Author(s):  
Sugato Hajra ◽  
Manisha Sahu ◽  
Aneeta Manjari Padhan ◽  
Jaykishon Swain ◽  
Basanta Kumar Panigrahi ◽  
...  

Harvesting mechanical energy from surroundings can be a promising power source for micro/nano-devices. The triboelectric nanogenerator (TENG) works in the principle of triboelectrification and electrostatic induction. So far, the metals...


2019 ◽  
Vol 5 (4) ◽  
pp. eaav6437 ◽  
Author(s):  
Di Liu ◽  
Xing Yin ◽  
Hengyu Guo ◽  
Linglin Zhou ◽  
Xinyuan Li ◽  
...  

In situ conversion of mechanical energy into electricity is a feasible solution to satisfy the increasing power demand of the Internet of Things (IoTs). A triboelectric nanogenerator (TENG) is considered as a potential solution via building self-powered systems. Based on the triboelectrification effect and electrostatic induction, a conventional TENG with pulsed AC output characteristics always needs rectification and energy storage units to obtain a constant DC output to drive electronic devices. Here, we report a next-generation TENG, which realizes constant current (crest factor, ~1) output by coupling the triboelectrification effect and electrostatic breakdown. Meanwhile, a triboelectric charge density of 430 mC m−2 is attained, which is much higher than that of a conventional TENG limited by electrostatic breakdown. The novel DC-TENG is demonstrated to power electronics directly. Our findings not only promote the miniaturization of self-powered systems used in IoTs but also provide a paradigm-shifting technique to harvest mechanical energy.


Author(s):  
Saeed Ahmed Khan ◽  
Shamsuddin Lakho ◽  
Ahmed Ali ◽  
Abdul Qadir Rahimoon ◽  
Izhar Hussain Memon ◽  
...  

Most of the emerging electronic devices are wearable in nature. However, the frequent changing or charging the battery of all wearable devices is the big challenge. Interestingly, with those wearable devices that are directly associated with the human body, the body can be used in transferring or generating energy in a number of techniques. One technique is triboelectric nanogenerators (TENG). This chapter covers different applications where the human body is used as a triboelectric layer and as a sensor. Wearable TENG has been discussed in detail based on four basic modes that could be used to monitor the human health. In all the discussions, the main focus is to power the wearable healthcare internet of things (IoT) sensor through human body motion based on self-powered TENG. The IoT sensors-based wearable devices related to human body can be used to develop smart body temperature sensors, pressure sensors, smart textiles, and fitness tracking sensors.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2815
Author(s):  
Dong Wan ◽  
Ningchen Ma ◽  
Taochuang Zhao ◽  
Xiaojing Cui ◽  
Zhaosu Wang ◽  
...  

The adaptable monitoring of the ubiquitous magnetic field is of great importance not only for scientific research but also for industrial production. However, the current detecting techniques are unwieldly and lack essential mobility owing to the complex configuration and indispensability of the power source. Here, we have constructed a self-powered magnetic sensor based on a subtle triboelectric nanogenerator (TENG) that consists of a magnetorheological elastomer (MRE). This magnetic sensor relies on triboelectrification and electrostatic induction to produce electrical signals in response to the MRE’s deformation induced by the variational magnetic field without using any external power sources. The fabricated magnetic sensor shows a fast response of 80ms and a desirable sensitivity of 31.6 mV/mT in a magnetic field range of 35–60 mT as well as preliminary vectorability enabled by the multichannel layout. Our work provides a new route for monitoring dynamic magnetic fields and paves a way for self-powered electric-magnetic coupled applications.


Micromachines ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 438 ◽  
Author(s):  
Muhammad Omar Shaikh ◽  
Yu-Bin Huang ◽  
Cheng-Chien Wang ◽  
Cheng-Hsin Chuang

Several wearable devices have already been commercialized and are likely to open up a new life pattern for consumers. However, the limited energy capacity and lifetime have made batteries the bottleneck in wearable technology. Thus, there have been growing efforts in the area of self-powered wearables that harvest ambient mechanical energy directly from surroundings. Herein, we demonstrate a woven triboelectric nanogenerator (WTENG) utilizing electrospun Polyvinylidene fluoride (PVDF) nanofibers and commercial nylon cloth to effectively harvest mechanical energy from human motion. The PVDF nanofibers were fabricated using a highly scalable multi-nozzle far-field centrifugal electrospinning protocol. We have also doped the PVDF nanofibers with small amounts of multi-walled carbon nanotubes (MWCNT) to improve their triboelectric performance by facilitating the growth of crystalline β-phase with a high net dipole moment that results in enhanced surface charge density during contact electrification. The electrical output of the WTENG was characterized under a range of applied forces and frequencies. The WTENG can be triggered by various free-standing triboelectric layers and reaches a high output voltage and current of about 14 V and 0.7 µA, respectively, for the size dimensions 6 × 6 cm. To demonstrate the potential applications and feasibility for harvesting energy from human motion, we have integrated the WTENG into human clothing and as a floor mat (or potential energy generating shoe). The proposed triboelectric nanogenerator (TENG) shows promise for a range of power generation applications and self-powered wearable devices.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Ying Wu ◽  
Yuanjie Su ◽  
Junjie Bai ◽  
Guang Zhu ◽  
Xiaoyun Zhang ◽  
...  

A self-powered, sliding electrification based triboelectric sensor was developed for detecting PH value from a periodic contact/separation motion. This innovative, cost-effective, simply designed sensor is composed of a fluorinated ethylene propylene thin film and an array of electrodes underneath. The operation of the TENG (triboelectric nanogenerator) sensor relies on a repetitive emerging-submerging process with traveling solution waves, in which the coupling between triboelectrification and electrostatic induction gives rise to alternating flows of electrons between electrodes. On the basis of coupling effect between triboelectrification and electrostatic induction, the sensor generates electric output signals which are associated with PH value. Experimental results show that the output voltage of the TENG sensor increases with the increasing PH value, which indicate that the PH value of different solution can be real-time monitored. This work not only demonstrates a new principle in the field of PH value measurement but also greatly expands the applicability of triboelectric nanogenerator (TENG) as self-powered sensors.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 231
Author(s):  
Chengyu Li ◽  
Ziming Wang ◽  
Sheng Shu ◽  
Wei Tang

Recently, grating-structured triboelectric nanogenerators (TENG) operating in freestanding mode have been the subject of intensive research. However, standard TENGs based on interdigital electrode structures are unable to realize real-time sensing of the direction of the freestanding electrode movement. Here, a newly designed TENG, consisting of one group of grating freestanding electrodes and three groups of interdigitated induction electrodes with the identical period, has been demonstrated as a self-powered vector angle/displacement sensor (SPVS), capable of distinguishing the real-time direction of the freestanding electrode displacement. Thanks to the unique coupling effect between triboelectrification and electrostatic induction, periodic alternating voltage signals are generated in response to the rotation/sliding movement of the top freestanding electrodes on the bottom electrodes. The output peak-to-peak voltage of the SPVS can reach as high as 300 V at the rotation rate of 48 rpm and at the sliding velocity of 0.1 m/s, respectively. The resolution of the sensor reaches 8°/5 mm and can be further enhanced by decreasing the width of the electrodes. This present work not only demonstrates a novel method for angle/displacement detection but also greatly expands the applicability of TENG as self-powered vector sensors.


Sign in / Sign up

Export Citation Format

Share Document