scholarly journals Income Maximisation in a Maltese Household Photovoltaic System by Means of Output and Consumption Simulations

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7934
Author(s):  
Daniele Zingariello ◽  
Marija Demicoli ◽  
Luciano Mule’ Stagno

The installation of photovoltaic (PV) systems in the Maltese Islands plays an important role in allowing Malta to increase its share in renewable energy to meet the set European Union targets. In the Maltese residential sector, PV systems are generally installed on rooftops of households with a south-facing orientation and a 30° inclination angle. The scope of this study is to present a methodology to maximise the income for residents from electricity generated, by comparing the output of electricity generation with the electricity consumption patterns of different household types and consequently identifying the most favourable installation configurations of these PV systems. The research was carried out by simulating the monthly electricity generation of a 3 kilowatt-peak PV system for a year, as well as the hourly electricity generation for a day in each season of the year using the PVsyst software package. A total of 21 configurations were studied by altering the orientation and inclination angles used to install the PV system. This study confirms that a south-facing PV system inclined at 30° generates the most electricity in a year. However, when compared with electricity consumption patterns of low-, medium- and high-consumption households, it is shown that a south-facing PV system inclined at 40° provides a better income for residents.

2018 ◽  
Vol 49 ◽  
pp. 00013 ◽  
Author(s):  
Bartosz Chwieduk ◽  
Michał Chwieduk

The paper presents the results of calculations of energy consumption and economic analysis of the operation of micro photovoltaic installations. Calculations have been made for a single-family house with an energy demand based on real electricity consumption. Two cases have been considered. In the first one, the photovoltaic system contains only PV modules and an inverter. Energy produced is sent to the power grid. In the second case, the PV system also contains batteries. Because of existing regulation conditions, it is better to accumulate produced energy than to sell it to the grid. Costs of construction of the PV systems and money savings during operation of the PV systems have been compared. Conclusions of profitability of analyzed systems have been presented.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3152 ◽  
Author(s):  
Huadian Xu ◽  
Jianhui Su ◽  
Ning Liu ◽  
Yong Shi

Conventional photovoltaic (PV) systems interfaced by grid-connected inverters fail to support the grid and participate in frequency regulation. Furthermore, reduced system inertia as a result of the integration of conventional PV systems may lead to an increased frequency deviation of the grid for contingencies. In this paper, a grid-supporting PV system, which can provide inertia and participate in frequency regulation through virtual synchronous generator (VSG) technology and an energy storage unit, is proposed. The function of supporting the grid is implemented in a practical PV system through using the presented control scheme and topology. Compared with the conventional PV system, the grid-supporting PV system, behaving as an inertial voltage source like synchronous generators, has the capability of participating in frequency regulation and providing inertia. Moreover, the proposed PV system can mitigate autonomously the power imbalance between generation and consumption, filter the PV power, and operate without the phase-locked loop after initial synchronization. Performance analysis is conducted and the stability constraint is theoretically formulated. The novel PV system is validated on a modified CIGRE benchmark under different cases, being compared with the conventional PV system. The verifications demonstrate the grid support functions of the proposed PV system.


Buildings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 566
Author(s):  
Khuram Pervez Amber ◽  
Rizwan Ahmad ◽  
Mina Farmanbar ◽  
Muhammad Anser Bashir ◽  
Sajid Mehmood ◽  
...  

In Pakistan, data for household electricity consumption are available in the form of monthly electricity bills only, and, therefore, are not helpful in establishing appliance-wise consumption. Further, it does not help in establishing the relationship among the household electricity consumption and various driving factors. This study aimed to unlock the household electricity consumption in Pakistan by analyzing electricity bills and investigating the impact of various socioeconomic, demographic, and dwelling parameters and usage of different appliances. The methodology adopted in this study was survey-based data collection of the residential sector. For this purpose, data were collected from 523 dwellings through surveys and interviews in Mirpur city. The results of the data analysis revealed that the average household electricity consumption is 2469 kWh/year with an average family size of seven and an average floor area of 78.91 m2. Based on possession of various appliances, the households were categorized into four types and their consumption patterns were established and compared. Air Conditioned (AC) houses consume 44% more electricity compared to the non-AC houses, whereas an Uninterrupted Power Supply (UPS) consumes electricity equivalent to an AC. The research findings are useful for policy makers and building designers and are discussed in the conclusion section.


Author(s):  
Mohammed Bouzidi ◽  
Abdelkader Harrouz ◽  
Tadj Mohammed ◽  
Smail Mansouri

<p>The inverter is the principal part of the photovoltaic (PV) systems that assures the direct current/alternating current (DC/AC) conversion (PV array is connected directly to an inverter that converts the DC energy produced by the PV array into AC energy that is directly connected to the electric utility). In this paper, we present a simple method for detecting faults that occurred during the operation of the inverter. These types of faults or faults affect the efficiency and cost-effectiveness of the photovoltaic system, especially the inverter, which is the main component responsible for the conversion. Hence, we have shown first the faults obtained in the case of the short circuit. Second, the open circuit failure is studied. The results demonstrate the efficacy of the proposed method. Good monitoring and detection of faults in the inverter can increase the system's reliability and decrease the undesirable faults that appeared in the PV system. The system behavior is tested under variable parameters and conditions using MATLAB/Simulink.</p>


2018 ◽  
Vol 225 ◽  
pp. 04004
Author(s):  
Tan Dei Han ◽  
Mohamad Rosman M. Razif ◽  
Shaharin A. Sulaiman

Solar photovoltaic (PV) systems has the potential of supplying infinite electricity from renewable energy to rural areas around Malaysia. Various preterm failures happening frequently on the system lead to its drop in efficiency and breakdown. Lack of studies on the system in Malaysia hinders the development in terms of operation and maintenance. There is no proper documentation relevant to the premature failure of the system in Malaysia. The main objective of this project is to study the nature of premature failure of stand-alone solar photovoltaic system in Malaysia in order to improve the operation and maintenance of the system. The present study would provide reference for proper planning on operation and maintenance of the PV system. The study was conducted base on expert’s input and extensive literature survey. FMEA method and ISM approach are applied to analyze the data collected. Poor cooling system have the highest risk priority number. Poor workmanship is the least depending factor for premature failure to happen thus requires most attention. Highest driving force of premature failure is poor monitoring and maintenance. More focus should be given to these premature failure during the planning for operation and maintenance due to its severity and impact.


2020 ◽  
Vol 12 (6) ◽  
pp. 2233
Author(s):  
Tamer Khatib ◽  
Dhiaa Halboot Muhsen

A standalone photovoltaic system mainly consists of photovoltaic panels and battery bank. The use of such systems is restricted mainly due to their high initial costs. This problem is alleviated by optimal sizing as it results in reliable and cost-effective systems. However, optimal sizing is a complex task. Artificial intelligence (AI) has been shown to be effective in PV system sizing. This paper presents an AI-based standalone PV system sizing method. Differential evolution multi-objective optimization is used to find the optimal balance between system’s reliability and cost. Two objective functions are minimized, the loss of load probability and the life cycle cost. A numerical algorithm is used as a benchmark for the proposed method’s speed and accuracy. Results indicate that the AI algorithm can be successfully used in standalone PV systems sizing. The proposed method was roughly 27 times faster than the numerical method. Due to AI algorithm’s random nature, the proposed method resulted in the exact optimal solution in 6 out of 12 runs. Near-optimal solutions were found in the other six runs. Nevertheless, the nearly optimal solutions did not introduce major departure from optimal system performance, indicating that the results of the proposed method are practically optimal at worst.


Author(s):  
T. NARASIMHA PRASAD ◽  
V. LAKSHMI DEVI

Solar energy has become a very potential new energy; Connected directly with grid-connected photovoltaic (PV) systems does not require bulk and lossy battery. Distributed generation and on-site supply of PV system reduces losses of transmission and distribution, and mitigates environment pollution. This paper establishes a Dynamic model of grid-connected PV system by Matlab/Simulink with d-and q-axis as coordinates which is synchronously rotating with the grid voltage to reflect the characteristics of the system accurately. Based on the accurate modeling system, optimum control and fault analysis are studied. The simulation and analysis verify the effectiveness of the proposed algorithm, and demonstrate that the proposed control system has good static performance.


Author(s):  
Mohamad Kharseh ◽  
Holger Wallbaum

The current work investigates how adding a battery of optimal capacity to a grid-connected photovoltaic (PV) system can improve its economic feasibility. Also, the effect of different parameters on the feasibility of the PV system was evaluated. The OBC was determined for different saving targets of the annual electricity consumption of the chosen building. For this aim, real electricity consumption data of a residential building in Landskrona, Sweden, was used as energy consumption profile. Solar World SW325XL, which is a monocrystalline solar panel, was selected as PV panels. The calculations were performed under the metrological and economic conditions of southern Sweden. Different working parameters (WP)were considered (prices of the battery, feed-in tariffs, and saving targets). The performed calculations show that the optimal battery capacity (OBC), in which the payback time (PBT) of the system is maximized, strongly depends on the WP. The proper selection of the battery can considerably increase the economic feasibility of the PV system in southern Sweden. However, in some cases, using battery can have a negative impact on the PBT of the system. The results show that the electricity price, the module price, the inverter price, and the inverter lifetime have the highest effect on the PBT.


Author(s):  
José Alfonso Sánchez-Cortez ◽  
Carlos Eduardo Castillo-Ramírez ◽  
Amparo González-Morales ◽  
Luis Guillermo Vázquez-Baldazo

The increase in costs for electricity consumption has gone up, significantly affecting the economy of users, within the tariffs of residential users is the “DAC” rate (that means high consumption domestic rate). An economic analysis of electricity consumption rates indicates that, as of January 1st, 2019, the cost per kWh used in the “DAC” tariff corresponds to $ 5.121 MXN, which means that a “DAC” user pays more than 200% than a user 1C rate for each kWh consumed. For this purpose, a photovoltaic system has been designed for interconnection to the network, this system allows users to change from “DAC” rate to tariff 1C, and consequently will allow the reduction of these costs about the electric power service, this system can be installed in any yard, besides generating electricity, the photovoltaic products will be 2: a swing and a gazebo, with an installed capacity of 1.1 kWh, which will provide a rest and relaxation service.


Author(s):  
Carlos Andrés Ramos-Paja ◽  
Daniel Gonzalez-Motoya ◽  
Juan Pablo Villegas-Seballos ◽  
Sergio Ignacio Serna-Garces ◽  
Roberto Giral

The wide range of step-up and step-down input-output voltage characteristic of the Cuk converter makes it a good candidate to interface photovoltaic arrays in both classical and distributed maximum power point tracking systems. Because its two inductor structure, Cuk converters have continuous input and output currents, which reduce the additional filtering elements usually required for interfacing dc/dc converter topologies. However, PV systems based on Cuk converters usually do not provide formal proofs of global stability under realistic conditions, which makes impossible to ensure a safe operation of the PV installation. Therefore, this paper proposes a high performance sliding-mode controller for PV systems based on Cuk converters, which regulates the PV voltage in agreement with the commands imposed by a MPPT algorithm, rejecting both load and environmental perturbations, and ensuring global stability for real operation conditions. Finally, the performance of the regulated PV system is tested using both simulations and experiments.


Sign in / Sign up

Export Citation Format

Share Document