scholarly journals Techno-Economic Assessment of Biological Biogas Upgrading Based on Danish Biogas Plants

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8252
Author(s):  
Néméhie Lawson ◽  
Merlin Alvarado-Morales ◽  
Panagiotis Tsapekos ◽  
Irini Angelidaki

Biological biogas upgrading with H2 derived from excess renewable electricity was modeled and simulated in PROII® (AVEVA Group plc, Cambridge, UK). An economic analysis was performed for a biogas plant processing 100,000 tons of biomass (substrate) per year. The biogas and biomethane production simulation results were validated with laboratory experimental data, as well as full-scale data obtained from biogas plants. A biomethane production cost of 0.47 €/Nm3 was calculated, while the minimum biomethane selling price for NPV = 0 was equal to 0.66 €/Nm3, considering a H2 price of 1.0 €/kg. The feasibility analysis indicated that the H2-related costs were the major contributor to the capital and operation costs due to high expenses associated with the in-situ H2 storage facility and the purchasing of H2, respectively. Compared to conventional upgrading methods, biological biogas upgrading has a higher capital and production cost, which can be reduced by increasing the plant capacity. The sensitivity analysis showed that the profitability is very sensitive to biomethane prices, capital investment, and the H2 price.

2021 ◽  
Vol 238 ◽  
pp. 03002
Author(s):  
Alessandra Perna ◽  
Mariagiovanna Minutillo ◽  
Alessandro Sorce

The exploitation of the biomethane as transport fuel is receiving increasing attention in many European countries. Technologies and processes for improving the Biogas-to-biomethane production with a lower energy consumption and lower costs are objective of several techno-economic studies. In this paper two promising concepts for the biogas conversion are proposed and analyzed considering both technical and economic issues. The analysis regards the biogas upgrading by means of the chemical absorption with Hot Potassium Carbonate and the direct methanation of biogas by adding renewable hydrogen. In order to assess the feasibility of these technologies the numerical modelling has been applied for the plants designing. The energy results have then been used to assess the expected biomethane production price and a sensitivity analysis on the main parameters has been performed. Finally, economic performance of the options proposed will be evaluated under different market conditions.


2021 ◽  
Author(s):  
Amir Al Ghatta ◽  
James D. E. T. Wilton-Ely ◽  
Jason P. Hallett

Process simulations allow the evaluation of the emissions and selling price for the production of the key monomer FDCA based on different feedstocks and solvent systems, alongside considerations of safety and current process development.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2424
Author(s):  
Jan Martin Zepter ◽  
Jan Engelhardt ◽  
Tatiana Gabderakhmanova ◽  
Mattia Marinelli

Biogas plants may support the transformation towards renewable-based and integrated energy systems by providing dispatchable co-generation as well as opportunities for biogas upgrading or power-to-X conversion. In this paper, a simulation model that comprises the main dynamics of the internal processes of a biogas plant is developed. Based on first-order kinetics of the anaerobic digestion process, the biogas production of an input feeding schedule of raw material can be estimated. The output of the plant in terms of electrical and thermal energy is validated against empirical data from a 3-MW biogas plant on the Danish island of Bornholm. The results show that the model provides an accurate representation of the processes within a biogas plant. The paper further provides insights on the functioning of the biogas plant on Bornholm as well as discusses upgrading potentials of biogas to biomethane at the plant from an energy perspective.


2011 ◽  
Vol 88 (6) ◽  
pp. 2013-2018 ◽  
Author(s):  
Zaki-ul-Zaman Asam ◽  
Tjalfe Gorm Poulsen ◽  
Abdul-Sattar Nizami ◽  
Rashad Rafique ◽  
Ger Kiely ◽  
...  

2021 ◽  
Vol 104 ◽  
pp. 103-112
Author(s):  
Andrea Gilang Fauzi ◽  
Cut Nanda Sari ◽  
Andre Fahriz Perdana Harahap ◽  
Muhammad Yusuf Arya Ramadhan ◽  
Misri Gozan

Surfactants are amphiphilic molecules that have been used in widely used as emulsifier and cleaning agent in various industries. These broad industrial applications made the global surfactant production increased annually. In 2020, the amount of global surfactant production estimated would reach more than 24 million per year. However, the currently used surfactants are synthetically produced from chemical or petroleum-derived products, so it is often toxic and non-biodegradable. Rhamnolipids are “surfactant like” molecules produced by Pseudomonas aeruginosa, which could be alternatives for more environmentally friendly surfactants. The use of rhamnolipids is quite limited due to its expensive production cost. The production cost of rhamnolipid could be reduced using by agro-industrial by-product as a substrate. One of the abundant agro-industrial by-products in Indonesia that can be used as a substrate for rhamnolipid production is Oil Palm Empty Fruit Bunch (OPEFB). This study employed SuperPro Designer v9.5 to performed process simulation and economic assessment of rhamnolipid production using OPEFB as a substrate through two different purification methods, which are solvent extraction and chromatography adsorption. Based on the process simulation that has been done, the process that used adsorption chromatography purification methods more efficient in terms of the usage of the feedstock and energy. The economic assessment also showed that these methods were more profitable and economically attractive, with the value of NPV 11.400.000 USD, IRR 11,64%, and Payback Period 6,21 years.


2021 ◽  
Author(s):  
MASAKI ENDO ◽  
HIROSHI SAITO ◽  
ISAO KIMPARA

Carbon fiber reinforced plastic (CFRP) is a composite material in which carbon fibers are impregnated with resin to achieve both high strength and high rigidity. CFRP is an excellent material, but it is expensive in terms of materials, manufacturing costs, and capital investment, and it takes a lot of time to complete a product. In order to solve these problems, the demand for de-autoclaving has been increasing in recent years. If molding can be performed without autoclaving, it will be possible to reduce costs and improve productivity in terms of materials and capital investment costs.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Gbeminiyi M. Sobamowo ◽  
Sunday J. Ojolo

Nigeria has not been able to provide enough electric power to her about 200 million people. The last effort by the federal government to generate 6000 MW power by the end of 2009 failed. Even with the available less than 6000 MW of electricity generated in the country, only about 40% of the population have access to the electricity from the National Grid, out of which, urban centers have more than 80% accessibility while rural areas, which constitute about 70% of the total population, have less than 20% of accessibility to electricity. This paper addresses the possibility of meeting the energy demand in Nigeria through biomass gasification technology. The techno-economic analysis of biomass energy is demonstrated and the advantages of the biomass gasification technology are presented. Following the technical analysis, Nigeria is projected to have total potential of biomass of about 5.5 EJ in 2020 which has been forecast to increase to about 29.8 EJ by 2050. Based on a planned selling price of $0.727/kWh, the net present value of the project was found to be positive, the cost benefit ratio is greater than 1, and the payback period of the project is 10.14 years. These economic indicators established the economic viability of the project at the given cost. However, economic analysis shows a selling price of $0.727/kWh. Therefore, the capital investment cost, operation and maintenance cost, and fuel cost can be reduced through the development of the gasification system using local materials, purposeful and efficient plantation of biomass for the energy generation, giving out of financial incentives by the government to the investors, and locating the power plant very close to the source of feedstock generation.


2004 ◽  
Vol 61 (2) ◽  
pp. 228-233 ◽  
Author(s):  
Leonardo Susumu Takahashi ◽  
Flavio Daolio Gonçalves ◽  
Janessa Sampaio de Abreu ◽  
Maria Inez Espagnoli Geraldo Martins ◽  
Antonio Carlos Manduca Ferreira

Brazilian fish farms presented an accelerated development during the early 90's, mainly because of the increase in fee-fishing operations. To meet the demand of this market, fish production and supply became excessive and, as a consequence, the number of fee-fishing operations, farmers and the final selling price, decreased. This study analyzes the technical aspects, production cost, profitability and economic viability of the production of piauçu (L. macrocephalus) in ponds, based on information from a rural property. Feeding and fingerling costs amount to approximately 47.1% of the total production cost, representing together with the final selling price the most important factor affecting profitability. The payback period was 8.3 years, the liquid present value US$ 291.07, the internal return margin 9%, and the income-outcome ratio was 1.01, which represents an unattractive investment as a projection based on current conditions. The improvement in productive efficiency enhances the economic valuation index, and that the relative magnitude of cost and income are the most important points for the economic viability of the studied farm.


2014 ◽  
pp. 171-176
Author(s):  
Angéla Soltész

I prepared a “model farm” producing fattening pigs in order to examine the main risk of production and market factors affecting the profitability of fattening pig production. Values of body weight (at the beginning of fattening and at the end of fattening), mortality rate, feed conversion ratio (FCR) of fattening pig as well as the main cost and price data were recorded as the input data of the model. Production value per unit, production cost per unit and income per unit were used as output. The Monte-Carlo simulation was used in the model for risk assessment. Based on the results of the analysis, it was concluded that the production value per unit was most affected by the selling price of fattening pig (ß=0.972), the production cost per unit were most influenced by the body weight at the beginning of fattening (ß=0.567) and the feed conversion ratio (ß=0.537), in addition, the change of the income per unit was most determined by the previously factors.


Sign in / Sign up

Export Citation Format

Share Document