scholarly journals A 1.2 kV SiC MOSFET with Integrated Heterojunction Diode and P-shield Region

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8582
Author(s):  
Jongwoon Yoon ◽  
Jaeyeop Na ◽  
Kwangsoo Kim

A 1.2 kV SiC MOSFET with an integrated heterojunction diode and p-shield region (IHP-MOSFET) was proposed and compared to a conventional SiC MOSFET (C-MOSFET) using numerical TCAD simulation. Due to the heterojunction diode (HJD) located at the mesa region, the reverse recovery time and reverse recovery charge of the IHP-MOSFET decreased by 62.5% and 85.7%, respectively. In addition, a high breakdown voltage (BV) and low maximum oxide electric field (EMOX) could be achieved in the IHP-MOSFET by introducing a p-shield region (PSR) that effectively disperses the electric field in the off-state. The proposed device also exhibited 3.9 times lower gate-to-drain capacitance (CGD) than the C-MOSFET due to the split-gate structure and grounded PSR. As a result, the IHP-MOSFET had electrically excellent static and dynamic characteristics, and the Baliga’s figure of merit (BFOM) and high frequency figure of merit (HFFOM) were increased by 37.1% and 72.3%, respectively. Finally, the switching energy loss was decreased by 59.5% compared to the C-MOSFET.

Author(s):  
Jongwoon Yoon ◽  
Kwangsoo Kim

Abstract In this study, we proposed high-performance SiC MOSFET embedded heterojunction diode (HJD) with an electric field protection (EFP) region and analyzed it using a Sentaurus TCAD simulation. The proposed device features an HJD positioned at the trench side wall in the middle of the JFET region and a highly doped EFP region under the P+ polysilicon to features excellent static performance and high reliability. The simulation results revealed that the maximum oxide electric field (EMOX) and the Baliga’s figure-of-merit (BFOM) improved by 54% and 12%, respectively, compared with those of conventional SiC MOSFETs (C-MOSFETs). In addition, the EFP region suppressed the DIBL effect and leakage current in the HJD interface sufficiently. The HJD suppressed the bipolar degradation of the PiN body diode effectively due to its low VF (1.75 V). In addition, the proposed device demonstrated superior reverse-recovery characteristics, thereby improving trr and Qrr by 35% and 57%, respectively, compared to the corresponding values in C-MOSFET. Moreover, the input capacitance (CISS) was reduced by 17.5%, and CGD was reduced by 96%. Therefore, the high-frequency figure-of-merit (HFOM) improved by a factor of 25.8 in terms of RON × CGD. As a result, the proposed device is a promising structure for high-frequency and high-reliability applications.


2020 ◽  
Vol 1004 ◽  
pp. 783-788
Author(s):  
Ki Jeong Han ◽  
Ajit Kanale ◽  
B. Jayant Baliga ◽  
Subhashish Bhattacharya

The electrical characteristics of the 1.2-kV rated 4H-SiC accumulation-channel split-gate octagonal cell MOSFET (SG-OCTFET) are experimentally compared with linear, square, hexagonal, octagonal, and compact-octagonal cell topologies. The specific on-resistance of the SG-OCTFET is 52% larger than the conventional linear cell topology. However, the SG-OCTFET has: (i) high-frequency figure-of-merit HFFOM[Ron×Cgd] 9.4×, 6.1×, 2.6×, 2.0×, and 1.8× superior to the square, hex, linear, octagonal, and compact-octagonal cells; (ii) fastest switching performance among all cell topologies, with 26% smaller switching energy loss than the conventional linear cell topology; and (iii) short circuit capability 1.5× longer than the conventional linear cell topology. The SG-OCTFET device is therefore an optimum candidate for high frequency applications of SiC MOSFETs.


2020 ◽  
Vol 67 (10) ◽  
pp. 4046-4053
Author(s):  
Zhanwei Shen ◽  
Feng Zhang ◽  
Guoguo Yan ◽  
Zhengxin Wen ◽  
Wanshun Zhao ◽  
...  

2021 ◽  
Author(s):  
Abdul Naim Khan ◽  
KANJALOCHAN JENA ◽  
Soumya Ranjan Routray ◽  
Gaurav Chatterjee

Abstract In this article, the Authors have demonstrated and analyzed various analog/RF and linearity performance of a AlGaN/GaN gate recessed MOSHEMT (GR-MOSHEMT) grown on a Si substrate with mathematical modeling based TCAD simulation. Specifically, a Al2O3 dielectric GR-MOSHEMT has shown tremendous potential in terms of AC/DC figure of merits (FOM’s) such as low leakage current, high transconductance, high Ion/Ioff current ratio and excellent linear properties corresponding to conventional AlGaN/GaN HEMT and MOSHEMT. The figure-of-merit metrics such as VIP2, VIP3, IIP3 and IDM3 are performed for different drain to source voltages (VDS) of 2.5V, 5V and 10V. All the modeling and simulation results are generated by Commercial Silvaco TCAD and found to be satisfactory in terms of high frequency and power applications. The present GR-MOSHEMT device shows a superior performance with a threshold voltage of 0.5V, Current density of 888 mA, high transconductance of 225 mS/mm and high unit gain cut-off frequency of 0.91GHz. The results of the developed AlGaN/GaN GR-MOSHEMT considerably improves the device performance and also suitable for high power distortion less RF applications.


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1895
Author(s):  
Jinhee Cheon ◽  
Kwangsoo Kim

In this paper, we compare the static and switching characteristics of the 4H-SiC conventional UMOSFET (C-UMOSFET), double trench MOSFET (DT-MOSFET) and source trench MOSFET (ST-MOSFET) through TCAD simulation. In particular, the effect of the trenched source region and the gate trench bottom P+ shielding region on the capacitance is analyzed, and the dynamic characteristics of the three structures are compared. The input capacitance is almost identical in all three structures. On the other hand, the reverse transfer capacitance of DT-MOSFET and ST-MOSFET is reduced by 44% and 24%, respectively, compared to C-UMOSFET. Since the reverse transfer capacitance of DT-MOSFET and ST-MOSFET is superior to that of C-UMOSFET, it improves high frequency figure of merit (HF-FOM: RON-SP × QGD). The HF-FOM of DT-MOSFET and ST-MOSFET is 289 mΩ∙nC, 224 mΩ∙nC, respectively, which is improved by 26% and 42% compared to C-UMOSFET. The switching speed of DT-MOSFET and ST-MOSFET are maintained at the same level as the C-UMOSFET. The switching energy loss and power loss of the DT-MOSFET and ST-MOSFET are slightly improved compared to C-UMOSFET.


2019 ◽  
Vol 9 (3) ◽  
pp. 344-352 ◽  
Author(s):  
L.I. Stefanovich ◽  
O.Y. Mazur ◽  
V.V. Sobolev

Introduction: Within the framework of the phenomenological theory of phase transitions of the second kind of Ginzburg-Landau, the kinetics of ordering of a rapidly quenched highly nonequilibrium domain structure is considered using the lithium tantalate and lithium niobate crystals as an example. Experimental: Using the statistical approach, evolution equations describing the formation of the domain structure under the influence of a high-frequency alternating electric field in the form of a standing wave were obtained. Numerical analysis has shown the possibility of forming thermodynamically stable mono- and polydomain structures. It turned out that the process of relaxation of the system to the state of thermodynamic equilibrium can proceed directly or with the formation of intermediate quasi-stationary polydomain asymmetric phases. Results: It is shown that the formation of Regular Domain Structures (RDS) is of a threshold character and occurs under the influence of an alternating electric field with an amplitude less than the critical value, whose value depends on the field frequency. The conditions for the formation of RDSs with a micrometer spatial scale were determined. Conclusion: As shown by numerical studies, the RDSs obtained retain their stability, i.e. do not disappear even after turning off the external electric field. Qualitative analysis using lithium niobate crystals as an example has shown the possibility of RDSs formation in high-frequency fields with small amplitude under resonance conditions


Sign in / Sign up

Export Citation Format

Share Document