High-performance SiC MOSFET embedded heterojunction diode with electric field protection region

Author(s):  
Jongwoon Yoon ◽  
Kwangsoo Kim

Abstract In this study, we proposed high-performance SiC MOSFET embedded heterojunction diode (HJD) with an electric field protection (EFP) region and analyzed it using a Sentaurus TCAD simulation. The proposed device features an HJD positioned at the trench side wall in the middle of the JFET region and a highly doped EFP region under the P+ polysilicon to features excellent static performance and high reliability. The simulation results revealed that the maximum oxide electric field (EMOX) and the Baliga’s figure-of-merit (BFOM) improved by 54% and 12%, respectively, compared with those of conventional SiC MOSFETs (C-MOSFETs). In addition, the EFP region suppressed the DIBL effect and leakage current in the HJD interface sufficiently. The HJD suppressed the bipolar degradation of the PiN body diode effectively due to its low VF (1.75 V). In addition, the proposed device demonstrated superior reverse-recovery characteristics, thereby improving trr and Qrr by 35% and 57%, respectively, compared to the corresponding values in C-MOSFET. Moreover, the input capacitance (CISS) was reduced by 17.5%, and CGD was reduced by 96%. Therefore, the high-frequency figure-of-merit (HFOM) improved by a factor of 25.8 in terms of RON × CGD. As a result, the proposed device is a promising structure for high-frequency and high-reliability applications.

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8582
Author(s):  
Jongwoon Yoon ◽  
Jaeyeop Na ◽  
Kwangsoo Kim

A 1.2 kV SiC MOSFET with an integrated heterojunction diode and p-shield region (IHP-MOSFET) was proposed and compared to a conventional SiC MOSFET (C-MOSFET) using numerical TCAD simulation. Due to the heterojunction diode (HJD) located at the mesa region, the reverse recovery time and reverse recovery charge of the IHP-MOSFET decreased by 62.5% and 85.7%, respectively. In addition, a high breakdown voltage (BV) and low maximum oxide electric field (EMOX) could be achieved in the IHP-MOSFET by introducing a p-shield region (PSR) that effectively disperses the electric field in the off-state. The proposed device also exhibited 3.9 times lower gate-to-drain capacitance (CGD) than the C-MOSFET due to the split-gate structure and grounded PSR. As a result, the IHP-MOSFET had electrically excellent static and dynamic characteristics, and the Baliga’s figure of merit (BFOM) and high frequency figure of merit (HFFOM) were increased by 37.1% and 72.3%, respectively. Finally, the switching energy loss was decreased by 59.5% compared to the C-MOSFET.


Author(s):  
Ravi Shankar

Non-orthogonal multiple access (NOMA) is an important technique that enables fifth-generation (5G) wireless systems to satisfy the heterogeneous requirements of enhanced fairness, huge connectivity, high performance, low latency, and high reliability. In this work, the NOMA technique for 5G wireless communication is investigated, and considering user fairness limitations, the channel capacity has been optimized. Also, bandwidth efficiency (BE) is examined and the relationship between BE and energy efficiency (EE) is derived. Simulation results show that without wasting power the near user gets preference in power allocation when the target rate is greater than 6.4 bps/Hz. Also, when the target rate [Formula: see text] 6.4 bps/Hz, the outage performance of the near user will improve and the performance of the far user will remain the same. Also, it is demonstrated that cooperative NOMA outperforms all other techniques. Simulation outcomes confirm that NOMA performs better than conventional multiple access techniques in terms of EE and BE.


2010 ◽  
Vol 2010 ◽  
pp. 1-8
Author(s):  
Shih-Chang Hsia ◽  
Szu-Hong Wang ◽  
Ming-Huei Chen

Recently region-of-interest (ROI) based image coding is a popular topic. Since ROI area contains much more important information for an image, it must be prevented from error decoding while suffering from channel lost or unexpected attack. This paper presents an efficient error concealment method to recover ROI information with a hiding technique. Based on the progressive transformation, the low-frequency components of ROI are encoded to disperse its information into the high-frequency bank of original image. The capability of protection is carried out with extracting the ROI coefficients from the damaged image without increasing extra information. Simulation results show that the proposed method can efficiently reconstruct the ROI image when ROI bit-stream occurs errors, and the measurement of PSNR result outperforms the conventional error concealment techniques by 2 to 5 dB.


Author(s):  
Mongi Moujahed ◽  
Bilel Touaiti ◽  
Hechmi Benazza ◽  
Mohamed Jemli ◽  
Mohamed Boussak

<p><span>This paper aims to provide a high performance sensorless control based on an Extended Kalman Filter (EKF) applied to fault-tolerant PMSM drive system with stator-resistance estimation. It proposes a fast method of fault switches detection in the power converters. The considered drive is composed of three phases PMSM and a four leg three phase’s inverter when the fourth is the redundant leg. After a short-switch fault occurrence, the redundant leg replaces the faulty leg. The simulation results verify that the proposed control method and the fault tolerant inverter ensure the high reliability and continuously operation of the sensorless vector control PMSM system under inverter fault.</span></p>


2021 ◽  
Author(s):  
Hafsa Nigar ◽  
Hend I Alkhammash ◽  
Sajad A Loan

Abstract In this work, we design and simulate a high-performance vertical power MOSFET with a charge balanced drift layer, which modulates the RON-BV relation from super quadratic to linear. The proposed device is designed with a super junction drift layer which modulates the RON-BV relation from super quadratic to linear. The proposed device has the source and channel regions isolated from the super junction drift layer. This results in a significant improvement in the performance of the proposed device in comparison to the other conventional devices, in terms of Balliga’s figure of merit. A 2D TCAD simulation study reveals that the proposed device with an epitaxial layer thickness of 50μm shows an ON resistance of 3.84mΩ.cm2 for a break down voltage of 833V, which is the lowest among the resistances reported in the previous literature at this breakdown voltage. Further, the study of charge imbalances and the capacitance analyses including the calculation of gate charge has also been done. The values of Balliga’s figure of merit (FOM) calculated for all the drift thicknesses of the proposed structures are significantly outperforming the conventional super junction structures reported so far.


2021 ◽  
Author(s):  
Abdul Naim Khan ◽  
KANJALOCHAN JENA ◽  
Soumya Ranjan Routray ◽  
Gaurav Chatterjee

Abstract In this article, the Authors have demonstrated and analyzed various analog/RF and linearity performance of a AlGaN/GaN gate recessed MOSHEMT (GR-MOSHEMT) grown on a Si substrate with mathematical modeling based TCAD simulation. Specifically, a Al2O3 dielectric GR-MOSHEMT has shown tremendous potential in terms of AC/DC figure of merits (FOM’s) such as low leakage current, high transconductance, high Ion/Ioff current ratio and excellent linear properties corresponding to conventional AlGaN/GaN HEMT and MOSHEMT. The figure-of-merit metrics such as VIP2, VIP3, IIP3 and IDM3 are performed for different drain to source voltages (VDS) of 2.5V, 5V and 10V. All the modeling and simulation results are generated by Commercial Silvaco TCAD and found to be satisfactory in terms of high frequency and power applications. The present GR-MOSHEMT device shows a superior performance with a threshold voltage of 0.5V, Current density of 888 mA, high transconductance of 225 mS/mm and high unit gain cut-off frequency of 0.91GHz. The results of the developed AlGaN/GaN GR-MOSHEMT considerably improves the device performance and also suitable for high power distortion less RF applications.


2012 ◽  
Vol 23 (9) ◽  
pp. 1001-1010 ◽  
Author(s):  
Esa Kostamo ◽  
Jari Kostamo ◽  
Jyrki Kajaste ◽  
Matti Pietola

In this article, the servo property of a high-performance magnetorheological valve will be evaluated by closing the pressure feedback loop. The magnetorheological valve developed in this study has two separately controllable fluid flow channels and is especially designed for high-frequency applications. A state space model of the magnetorheological valve from the control signal to the pressure output will be identified, and the identified model is used for tuning a proportional–integral–derivative controller and for simulation of the closed-loop system. Finally, the controller will be implemented to a control computer, and the pressure output will be controlled in a real-time control loop. By analyzing the dynamic and static performance of the magnetorheological servo valve, it can be stated that the magnetorheological valve has a good potential for high-frequency pressure and force control applications.


2012 ◽  
Vol 588-589 ◽  
pp. 374-378
Author(s):  
Wen Dan Xu ◽  
Ping Li Ma ◽  
Jian Guo Jiang ◽  
Yuan Tian

Due to the high frequency, high density and high reliability requirements, as well as the difficulty of assembly, the lower qualified yield and the higher returning rate of the high density circuit module etc, a new testing method of high-density circuit module detection by electromagnetic scanning was present in order to realize comprehensive and efficient high-density PCB detection. Firstly, the standard board and tested board were scanned to get their electromagnetic information which was further used to compare and get their differences. Then the suspected faulty areas can be found according to the difference of the electromagnetic information. Finally, the suspected faulty components would be positioned referring to the high-density PCB design files. The simulation results show that the method based on electromagnetic information is feasible in high-density circuit module detection and has a higher detection rate.


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1895
Author(s):  
Jinhee Cheon ◽  
Kwangsoo Kim

In this paper, we compare the static and switching characteristics of the 4H-SiC conventional UMOSFET (C-UMOSFET), double trench MOSFET (DT-MOSFET) and source trench MOSFET (ST-MOSFET) through TCAD simulation. In particular, the effect of the trenched source region and the gate trench bottom P+ shielding region on the capacitance is analyzed, and the dynamic characteristics of the three structures are compared. The input capacitance is almost identical in all three structures. On the other hand, the reverse transfer capacitance of DT-MOSFET and ST-MOSFET is reduced by 44% and 24%, respectively, compared to C-UMOSFET. Since the reverse transfer capacitance of DT-MOSFET and ST-MOSFET is superior to that of C-UMOSFET, it improves high frequency figure of merit (HF-FOM: RON-SP × QGD). The HF-FOM of DT-MOSFET and ST-MOSFET is 289 mΩ∙nC, 224 mΩ∙nC, respectively, which is improved by 26% and 42% compared to C-UMOSFET. The switching speed of DT-MOSFET and ST-MOSFET are maintained at the same level as the C-UMOSFET. The switching energy loss and power loss of the DT-MOSFET and ST-MOSFET are slightly improved compared to C-UMOSFET.


Sign in / Sign up

Export Citation Format

Share Document