scholarly journals First-Principles Study of Amorphous Al2O3 ALD Coating in Li-S Battery Electrode Design

Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 390
Author(s):  
Jake A. Klorman ◽  
Qing Guo ◽  
Kah Chun Lau

The Li-S battery is exceptionally appealing as an alternative candidate beyond Li-ion battery technology due to its promising high specific energy capacity. However, several obstacles (e.g., polysulfides’ dissolution, shuttle effect, high volume expansion of cathode, etc.) remain and thus hinder the commercialization of the Li-S battery. To overcome these challenges, a fundamental study based on atomistic simulation could be very useful. In this work, a comprehensive investigation of the adsorption of electrolyte (solvent and salt) molecules, lithium sulfide, and polysulfide (Li2Sx with 2 ≤x≤ 8) molecules on the amorphous Al2O3 atomic layer deposition (ALD) surface was performed using first-principles density functional theory (DFT) calculations. The DFT results indicate that the amorphous Al2O3 ALD surface is selective in chemical adsorption towards lithium sulfide and polysulfide molecules compared to electrolytes. Based on this work, it suggests that the Al2O3 ALD is a promising coating material for Li-S battery electrodes to mitigate the shuttling problem of soluble polysulfides.

2018 ◽  
Author(s):  
Glen N. Fomengia ◽  
Michael Nolan ◽  
Simon D. Elliott

Plasma-enhanced atomic layer deposition (ALD) of metal oxides is a rapidly gaining interest especially in the electronics industry because of its numerous advantages over the thermal process. However, the underlying reaction mechanism is not sufficiently understood, particularly regarding saturation of the reaction and densification of the film. In this work, we employ first principles density functional theory (DFT) to determine the predominant reaction pathways, surface intermediates and by-products formed when constituents of O<sub>2</sub>-plasma or O<sub>3</sub> adsorb onto a methylated surface typical of TMA-based alumina ALD. The main outcomes are that a wide variety of barrierless and highly exothermic reactions can take place. This leads to the spontaneous production of various by-products with low desorption energies and also of surface intermediates from the incomplete combustion of –CH<sub>3</sub> ligands. Surface hydroxyl groups are the most frequently observed intermediate and are formed as a consequence of the conservation of atoms and charge when methyl ligands are initially oxidized (rather than from subsequent re-adsorption of molecular water). Anionic intermediates such as formates are also commonly observed at the surface in the simulations. Formaldehyde, CH<sub>2</sub>O, is the most frequently observed gaseous by-product. Desorption of this by-product leads to saturation of the redox reaction at the level of two singlet oxygen atoms per CH<sub>3</sub> group, where the oxidation state of C is zero, rather than further reaction with oxygen to higher oxidation states. We conclude that the self-limiting chemistry that defines ALD comes about in this case through the desorption by-products with partially-oxidised carbon. The simulations also show that densification occurs when ligands are removed or oxidised to intermediates, indicating that there may be an inverse relationship between Al/O coordination numbers in the final film and the concentration of chemically-bound ligands or intermediate fragments covering the surface during each ALD pulse. Therefore reactions that generate a bare surface Al will produce denser films in metal oxide ALD.


2009 ◽  
Vol 1155 ◽  
Author(s):  
Dae-Hyun Kim ◽  
Dae-Hee Kim ◽  
Hwa-Il Seo ◽  
Yeong-Cheol Kim

AbstractWe investigated the reaction of HfCl4 molecules with a H2O terminated Si (001)-2×1 surface using density functional theory to understand the initial stage of atomic layer deposition (ALD) of HfO2. Half monolayer of H2O molecules were adsorbed on the buckled-down Si atoms of the Si dimers of the Si (001)-2×1 surface below the dissociation temperature of H2O and were dissociated into H and OH at room temperature. This process could make uniform and well-aligned −H and −OH’s on the Si (001) substrate. The reaction of a HfCl4 molecule was more favorable with -OH than -H. The reaction of the HfCl4 molecule with the -OH generated a HCl molecule, and the remaining HfCl3 was attached to the O atom. The first reaction of the HfCl4 molecule with −OH produced 0.21 eV energy benefit. The reaction of the second HfCl4 molecule with the most adjacent −OH of the first one produced 0.28 eV energy benefit. The third and fourth molecules showed same tendency with the first and second ones. The energy differences of the fifth and sixth HfCl4 reactions were -0.01 eV, 0.06 eV, respectively. Therefore, we found that the saturation Hf coverage was approximately 5/8 of the available −OH's, which was 2.08 × 1014 Hf/cm2. The result was well-matched with the experimental study of other group.


2009 ◽  
Vol 1155 ◽  
Author(s):  
Dae-Hyun Kim ◽  
Dae-Hee Kim ◽  
Seo Hwa-Il ◽  
Ki-Young Kim ◽  
Yeong-Cheol Kim

AbstractDensity functional theory was used to investigate the adsorption and reaction of HfCl4 with two hydroxyls on Si (001)-2×1 surface in atomic layer deposition (ALD) process. When H2O molecules are adsorbed on Si (001) surface at room temperature, they are dissociated with hydrogens and hydroxyls. There are two dissociation pathways; inter-dimer dissociation and intra-dimer dissociation. The activation energies of these pathways can be converted to the reaction probabilities. It was approximately 2:1. We prepared a reasonable Si substrate which consisted of six inter-dimer dissociated H2O molecules and two intra-dimer dissociated H2O molecules. The HfCl4 must react with two hydroxyls to be a bulk-like structure. There were five reaction pathways where HfCl4 could react with two hydroxyls; inter-dimer, intra-dimer, cross-dimer, inter-row, and cross-row. Inter-row, inter-dimer and intra-dimer were relatively stable among the five reaction pathways based on the energy difference. The electron densities between O and Hf in these three reactions were higher than the others and they had shorter Hf-O and O-O bond lengths than the other two reaction pathways.


2018 ◽  
Author(s):  
Glen N. Fomengia ◽  
Michael Nolan ◽  
Simon D. Elliott

Plasma-enhanced atomic layer deposition (ALD) of metal oxides is a rapidly gaining interest especially in the electronics industry because of its numerous advantages over the thermal process. However, the underlying reaction mechanism is not sufficiently understood, particularly regarding saturation of the reaction and densification of the film. In this work, we employ first principles density functional theory (DFT) to determine the predominant reaction pathways, surface intermediates and by-products formed when constituents of O<sub>2</sub>-plasma or O<sub>3</sub> adsorb onto a methylated surface typical of TMA-based alumina ALD. The main outcomes are that a wide variety of barrierless and highly exothermic reactions can take place. This leads to the spontaneous production of various by-products with low desorption energies and also of surface intermediates from the incomplete combustion of –CH<sub>3</sub> ligands. Surface hydroxyl groups are the most frequently observed intermediate and are formed as a consequence of the conservation of atoms and charge when methyl ligands are initially oxidized (rather than from subsequent re-adsorption of molecular water). Anionic intermediates such as formates are also commonly observed at the surface in the simulations. Formaldehyde, CH<sub>2</sub>O, is the most frequently observed gaseous by-product. Desorption of this by-product leads to saturation of the redox reaction at the level of two singlet oxygen atoms per CH<sub>3</sub> group, where the oxidation state of C is zero, rather than further reaction with oxygen to higher oxidation states. We conclude that the self-limiting chemistry that defines ALD comes about in this case through the desorption by-products with partially-oxidised carbon. The simulations also show that densification occurs when ligands are removed or oxidised to intermediates, indicating that there may be an inverse relationship between Al/O coordination numbers in the final film and the concentration of chemically-bound ligands or intermediate fragments covering the surface during each ALD pulse. Therefore reactions that generate a bare surface Al will produce denser films in metal oxide ALD.


2021 ◽  
Author(s):  
Matthew Lawson

This dissertation implements first-principles calculations to understand the nucleation mechanisms for atomic layer deposition (ALD) of molybdenum disulfide (MoS2) using MoF6 and H2S precursors. ALD is a self-limiting process that can deposit a range of materials at the nanoscale, while maintaining chemical stoichiometry, atomic scale thickness control, and can conform to high-aspect ratio substrate designs. ALD is extremely sensitive to surface chemistry and morphology; therefore, it is critical to understand how these factors control deposition. Density functional theory (DFT) was used to understand what factors can control the nucleation for ALD of MoS2 using MoF6 and H2S. Surface hydroxyls on oxide substrates help facilitate the formation of ionic MFx (M = metal, x = 1, 2, 3) species, which thermodynamically drive the first-half cycle of ALD. DFT calculations were supported by experimental measurements to validate computational predictions. DFT and experiment both confirmed that there are different types of nucleation mechanisms during ALD of MoS2. The types of mechanisms depend on which precursor is introduced, and highlights the complexities during nucleation of MoS2 during ALD.


2009 ◽  
Vol 79-82 ◽  
pp. 1201-1204
Author(s):  
Hong Bin Su ◽  
Ping Yang ◽  
Jin Biao Wang ◽  
Nan Huang

In this paper, both geometrical and electronic properties of rutile TiO2 (110) surfaces have been investigated using First-Principles Density-Functional calculations with CASTEP code, the model of stoichiometric surface is a (2x1) super-cell which has 12 atomic-layer slabs with the bottom 6 held fixed, the bridging-oxygen vacancy surface has been constructed by removing a neutral bridging oxygen atom from this surface. For the stoichiometric surface, the atom relaxations are: Ti6f (+0.2865Å), Ti5f (-0.1039Å), O3f (+0.2433Å) and Ob (+0.0075Å), we find no reconstruction and no surface states in the band gap, the density of states (DOS) is similar to the bulk except the lower conduction band intensity, in accord with recent experiments. Whereas, as a result of bridging-oxygen vacancy, the atom relaxations exchanged and reconstruction occur. The 2 excess electrons left behind removal of one bridge O atom are localized on the Ti-t2g conduction band orbitals, convert some of the Ti4+ ions into Ti3+ ions and result a compensatory shift in the Fermi level. The band gaps we calculated for stoichiometric surface is similar to the bulk, but its increase can be found for Ob vacancy surface.


2015 ◽  
Vol 17 (26) ◽  
pp. 17322-17334 ◽  
Author(s):  
Timo Weckman ◽  
Kari Laasonen

A comprehensive density functional study on the reaction mechanisms during the atomic layer deposition of alumina via trimethylaluminium–waterprocess.


2020 ◽  
Author(s):  
David Zanders ◽  
Goran Bačić ◽  
Dominique Leckie ◽  
Oluwadamilola Odegbesan ◽  
Jeremy M. Rawson ◽  
...  

Attempted preparation of a chelated Co(II) β-silylamide re-sulted in the unprecedented disproportionation to Co(0) and a spirocyclic cobalt(IV) bis(β-silyldiamide): [Co[(NtBu)2SiMe2]2] (1). Compound 1 exhibits a room temperature magnetic moment of 1.8 B.M and a solid state axial EPR spectrum diagnostic of a rare S = 1/2 configuration. Semicanonical coupled-cluster calculations (DLPNO-CCSD(T)) revealed the doublet state was clearly preferred (–27 kcal/mol) over higher spin configurations for which density functional theory (DFT) showed no energetic preference. Unlike other Co(IV) complexes, 1 had remarkable thermal stability, and was demonstrated to form a stable self-limiting monolayer in initial atomic layer deposition (ALD) surface saturation tests. The ease of synthesis and high-stability make 1 an attractive starting point to begin investigating otherwise inaccessible Co(IV) intermediates and synthesizing new materials.


2017 ◽  
Author(s):  
Lyudmyla Adamska ◽  
Sridhar Sadasivam ◽  
Jonathan J. Foley ◽  
Pierre Darancet ◽  
Sahar Sharifzadeh

Two-dimensional boron is promising as a tunable monolayer metal for nano-optoelectronics. We study the optoelectronic properties of two likely allotropes of two-dimensional boron using first-principles density functional theory and many-body perturbation theory. We find that both systems are anisotropic metals, with strong energy- and thickness-dependent optical transparency and a weak (<1%) absorbance in the visible range. Additionally, using state-of-the-art methods for the description of the electron-phonon and electron-electron interactions, we show that the electrical conductivity is limited by electron-phonon interactions. Our results indicate that both structures are suitable as a transparent electrode.


Sign in / Sign up

Export Citation Format

Share Document