scholarly journals Numerical Analysis of Signal Response Characteristic of Piezoelectric Energy Harvesters Embedded in Pavement

Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2770
Author(s):  
Hailu Yang ◽  
Qian Zhao ◽  
Xueli Guo ◽  
Weidong Zhang ◽  
Pengfei Liu ◽  
...  

Piezoelectric pavement energy harvesting is a technological approach to transform mechanical energy into electrical energy. When a piezoelectric energy harvester (PEH) is embedded in asphalt pavements or concrete pavements, it is subjected to traffic loads and generates electricity. The wander of the tire load and the positioning of the PEH affect the power generation; however, they were seldom comprehensively investigated until now. In this paper, a numerical study on the influence of embedding depth of the PEH and the horizontal distance between a tire load and the PEH on piezoelectric power generation is presented. The result shows that the relative position between the PEH and the load influences the voltage magnitude, and different modes of stress state change voltage polarity. Two mathematic correlations between the embedding depth, the horizontal distance, and the generated voltage were fitted based on the computational results. This study can be used to estimate the power generation efficiency, and thus offer basic information for further development to improve the practical design of PEHs in an asphalt pavement.

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Long Zhang ◽  
Keith A. Williams ◽  
Zhengchao Xie

The power source with the limited life span has motivated the development of the energy harvesters that can scavenge the ambient environment energy and convert it into the electrical energy. With the coupled field characteristics of structure to electricity, piezoelectric energy harvesters are under consideration as a means of converting the mechanical energy to the electrical energy, with the goal of realizing completely self-powered sensor systems. In this paper, two previous models in the literatures for predicting the open-circuit and close-circuit voltages of a piezoelectric cantilever bimorph (PCB) energy harvester are first described, that is, the mechanical equivalent spring mass-damper model and the electrical equivalent circuit model. Then, the development of an enhanced coupled field model for the PCB energy harvester based on another previous model in the literature using a conservation of energy method is presented. Further, the laboratory experiments are carried out to evaluate the enhanced coupled field model and the other two previous models in the literatures. The comparison results show that the enhanced coupled field model can better predict the open-circuit and close-circuit voltages of the PCB energy harvester with a proof mass bonded at the free end of the structure in order to increase the energy-harvesting level of the system.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2876
Author(s):  
Hailu Yang ◽  
Ya Wei ◽  
Weidong Zhang ◽  
Yibo Ai ◽  
Zhoujing Ye ◽  
...  

Road power generation technology is of significance for constructing smart roads. With a high electromechanical conversion rate and high bearing capacity, the stack piezoelectric transducer is one of the most used structures in road energy harvesting to convert mechanical energy into electrical energy. To further improve the energy generation efficiency of this type of piezoelectric energy harvester (PEH), this study theoretically and experimentally investigated the influences of connection mode, number of stack layers, ratio of height to cross-sectional area and number of units on the power generation performance. Two types of PEHs were designed and verified using a laboratory accelerated pavement testing system. The findings of this study can guide the structural optimization of PEHs to meet different purposes of sensing or energy harvesting.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rahmat Zaki Auliya ◽  
Poh Choon Ooi ◽  
Rad Sadri ◽  
Noor Azrina Talik ◽  
Zhi Yong Yau ◽  
...  

AbstractA new 2D titanium carbide (Ti3C2), a low dimensional material of the MXene family has attracted remarkable interest in several electronic applications, but its unique structure and novel properties are still less explored in piezoelectric energy harvesters. Herein, a systematic study has been conducted to examine the role of Ti3C2 multilayers when it is incorporated in the piezoelectric polymer host. The 0.03 g/L of Ti3C2 has been identified as the most appropriate concentration to ensure the optimum performance of the fabricated device with a generated output voltage of about 6.0 V. The probable reasons might be due to the uniformity of nanofiller distribution in the polyvinylidene difluoride (PVDF) and the incorporation of Ti3C2 in a polymer matrix is found to enhance the β-phase of PVDF and diminish the undesired α-phase configuration. Low tapping frequency and force were demonstrated to scavenge electrical energy from abundant mechanical energy resources particularly human motion and environmental stimuli. The fabricated device attained a power density of 14 µW.cm−2 at 10.8 MΩ of load resistor which is considerably high among 2D material-based piezoelectric nanogenerators. The device has also shown stable electrical performance for up to 4 weeks and is practically able to store energy in a capacitor and light up a LED. Hence, the Ti3C2-based piezoelectric nanogenerator suggests the potential to realize the energy harvesting application for low-power electronic devices.


Author(s):  
Xiaole Yu ◽  
Yudong Hou ◽  
Mupeng Zheng ◽  
Mankang Zhu

The utilization of relaxor-based ferroelectrics with high piezoelectricity is considered to be an effective way to enhance the power generation capacity of piezoelectric energy harvesters (PEHs). However, the severe depolarization...


2011 ◽  
Vol 145 ◽  
pp. 21-26
Author(s):  
Long Zhang ◽  
Keith A. Williams ◽  
Zheng Chao Xie

As consumer electronics continue to develop in size and scope, the battery power source with the limited life span poses an increasing economic challenge. This growing problem has motivated the development of the energy harvesters that can scavenge the ambient environment energy and convert it into the electrical energy for use of the wireless sensor nodes and the portable electronics. With the coupled field characteristics of structure to electricity, piezoelectric energy harvesters are under consideration as a means for converting the mechanical energy to the electrical energy, with the goal of realizing completely self-powered sensor systems. In this paper, the development of an enhanced coupled field model for the PCB energy harvester based on a previous model in the literature using a conservation of energy method is presented. Further, the laboratory experiments are carried out to evaluate the enhanced coupled field model and the other two previous models in the literatures. The comparison results show that the enhanced coupled field model can better predict the open-circuit of the PCB energy harvester with a proof mass bonded at the free end of the structure in order to increase the energy harvesting level of the system.


2018 ◽  
Vol 29 (18) ◽  
pp. 3572-3581
Author(s):  
Suihan Liu ◽  
Ali Imani Azad ◽  
Rigoberto Burgueño

Piezoelectric energy harvesting from ambient vibrations is well studied, but harvesting from quasi-static responses is not yet fully explored. The lack of attention is because quasi-static actions are much slower than the resonance frequency of piezoelectric oscillators to achieve optimal outputs; however, they can be a common mechanical energy resource: from large civil structure deformations to biomechanical motions. The recent advances in bio-micro-electro-mechanical systems and wireless sensor technologies are motivating the study of piezoelectric energy harvesting from quasi-static conditions for low-power budget devices. This article presents a new approach of using quasi-static deformations to generate electrical power through an axially compressed bilaterally constrained strip with an attached piezoelectric layer. A theoretical model was developed to predict the strain distribution of the strip’s buckled configuration for calculating the electrical energy generation. Results from an experimental investigation and finite element simulations are in good agreement with the theoretical study. Test results from a prototyped device showed that a peak output power of 1.33 μW/cm2 was generated, which can adequately provide power supply for low-power budget devices. And a parametric study was also conducted to provide design guidance on selecting the dimensions of a device based on the external embedding structure.


Author(s):  
Nathan S. Hosking ◽  
Zahra Sotoudeh

In this paper, we study fully coupled electromagnetic-elastic behaviors present in the structures of smart beams using variational asymptotic beam sections and geometrically exact fully intrinsic beam equations combined in a consistent theory. We present results for smart beams under various oscillatory loads in both the axial and transverse directions and calculate the corresponding deformations. Recovery equations are employed to construct the full 3D stress and strain components in order to complete a full stress / strain analysis. Smart materials change mechanical energy to electrical energy; therefore, changing the structural dynamic behavior of the structure and its stiffness matrix.


Author(s):  
Saad F. Alazemi ◽  
Ahmet S. Yigit ◽  
Khaled A. Alhazza

In the past decade, there have been numerous studies which showed the feasibility of harvesting electrical energy from vibrating structures. The main goal of this study is first to generate a Finite Element (FE) model using ANSYS to verify an existing harvesting model. This FEM model can be used as a base for designing more complex harvesters. The second goal of this study is to optimize the parameters of a simple cantilever harvester to maximize the power generation from ambient mechanical energy. A distributed parameter model and its modal solution are used to identify the design variables through a parametric study. The results obtained using the distributed parametric model is compared with the results obtained using ANSYS. It is of interest to ensure adequate power generation under non-resonant conditions for a broad band excitation. The average power within a certain frequency range is used as the cost function to define optimization problem along with some geometric and physical constraints. We found that, in certain frequency ranges, the parameters can be optimized to generate maximum power. Having validated the methodology, work is in progress to design and optimize harvesters with complex geometries.


Author(s):  
Prateek Asthana ◽  
Gargi Khanna

Piezoelectric energy harvesting refers to conversion of mechanical energy into usable electrical energy. In the modern connected world, wireless sensor nodes are scattered around the environment. These nodes are powered by batteries. Batteries require regular replacement, hence energy harvesters providing continuous autonomous power are used to power these sensor nodes. This work provides two different fixation modes for the resonant frequency for the two modes. Variation in geometric parameter and their effect on resonant frequency and output power have been analyzed. These harvesters capture a wide-band of ambient vibrations and convert them into usable electrical energy. To capture random ambient vibrations, the harvester used is a wide-band energy harvester based on conventional seesaw mechanism. The proposed structure operates on first two resonant frequencies in comparison to the conventional cantilever system working on first resonant frequency. Resonance frequency, as well as response to a varying input vibration frequency, is carried out, showing better performance of seesaw cantilever design. In this work, modeling of wide-band energy harvester with proof mass is being performed. Position of proof mass plays a key role in determining the resonant frequency of the harvester. Placing the proof mass near or away from fixed end results in increase and decrease in stress on the piezoelectric layer. Hence, to avoid the breaking of cantilever, the position of proof mass has been analyzed.


Sign in / Sign up

Export Citation Format

Share Document