scholarly journals Environmental Profiling of Green Educational Building Using Life Cycle Assessment

2021 ◽  
Vol 12 (1) ◽  
pp. 10
Author(s):  
Talha Bin Farooq ◽  
Muhammad Bilal Sajid

Over the last twenty years, architects and designers have been working towards minimizing the impact that buildings have on the environment. In spite of the fact that many architects claim their buildings are environment-friendly, the claims cannot be justified unless a Life Cycle Analysis (LCA) is conducted. The two major parts of the theoretical basis of the proposed scheme are the concept of sustainability of the environment and methods of assessing the building’s environmental impacts. The objective of this report is to evaluate the possible ecological impact of an educational building through its life cycle, from extracting raw materials to the end of life. In order to accomplish the goal of the study, a single-case method of a life cycle assessment was used to determine which stage of the life cycle (manufacturing, construction, consumption, maintenance, and dismantling) made the most contribution to the overall impact. The main installation system (foundation, frame, wall, floor, roof) of a building will have an impact on the environment during its life cycle. A typical new educational building was used as a case study in Islamabad, along with an optimized LCA method based on energy consumption inventories, the material input and output, and the assessment of the environmental impact.

Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 873
Author(s):  
Francisco Javier Flor-Montalvo ◽  
Agustín Sánchez-Toledo Ledesma ◽  
Eduardo Martínez Cámara ◽  
Emilio Jiménez-Macías ◽  
Jorge Luis García-Alcaraz ◽  
...  

Natural stoppers are a magnificent closure for the production of aging wines and unique wines, whose application is limited by the availability of raw materials and more specifically of cork sheets of different thickness and quality. The growing demand for quality wine bottle closures leads to the search for alternative stopper production. The two-piece stopper is an alternative since it uses non-usable plates in a conventional way for the production of quality caps. The present study has analyzed the impact of the manufacture of these two-piece stoppers using different methodologies and for different dimensions by developing an LCA (Life Cycle Assessment), concluding that the process phases of the plate, its boiling, and its stabilization, are the phases with the greatest impact. Likewise, it is detected that the impacts in all phases are relatively similar (for one kg of net cork produced), although the volumetric difference between these stoppers represents a significant difference in impacts for each unit produced.


Author(s):  
Bayu Sukmana ◽  
Isti Surjandari ◽  
Muryanto . ◽  
Arief A. R. Setiawan ◽  
Edi Iswanto Wiloso

Firstly global warming issue caused by greenhouse gas emissions (CO2) which comes from human activities. Along with increasing of daily need, that humans of activities food produce is also increase, include of tofu. Tofu is a traditional Indonesian specialty made from soybeans and used as a side dish. The purpose of this study was to determine the impact of global warming from tofu products on Mampang Prapatan's Small Tofu and Medium Enterprises. The method used in this study is the Life Cycle Assessment (LCA) method with the help of Simapro 8.4 software with a 1 kg tofu functional unit. The data collected in this study is the average data of tofu production for 3 months, namely January - March 2018. The LCA data in this study include the process of soybean cultivation, transportation processes for shipping soybeans, water, fuel wood, and electricity use. The limitations of this study are from cradle (soybean cultivation) to gate (tofu products).The results showed that UKM Mampang Prapatan has the potential impact of global warming with a value of 3.84 kg CO2-eq, while the value of global warming in the production process knows the scenario of wastewater treatment and the use of Liquefied Petroleum Gas (LPG) as fuel for boiling pulp 4.49 kg CO2-eq soybeans. Based on the results of this study, greenhouse gas (CO2) emissions are issued; the intervention that can be done is to optimize the use of raw materials for production to reduce the impact of CO2-eq kg global warming.


2019 ◽  
Vol 11 (20) ◽  
pp. 5628 ◽  
Author(s):  
Jan Lindner ◽  
Horst Fehrenbach ◽  
Lisa Winter ◽  
Judith Bloemer ◽  
Eva Knuepffer

In this article, the authors propose an impact assessment method for life cycle assessment (LCA) that adheres to established LCA principles for land use-related impact assessment, bridges current research gaps and addresses the requirements of different stakeholders for a methodological framework. The conservation of biodiversity is a priority for humanity, as expressed in the framework of the Sustainable Development Goals (SDGs). Addressing biodiversity across value chains is a key challenge for enabling sustainable production pathways. Life cycle assessment is a standardised approach to assess and compare environmental impacts of products along their value chains. The impact assessment method presented in this article allows the quantification of the impact of land-using production processes on biodiversity for several broad land use classes. It provides a calculation framework with degrees of customisation (e.g., to take into account regional conservation priorities), but also offers a default valuation of biodiversity based on naturalness. The applicability of the method is demonstrated through an example of a consumer product. The main strength of the approach is that it yields highly aggregated information on the biodiversity impacts of products, enabling biodiversity-conscious decisions about raw materials, production routes and end user products.


2021 ◽  
Vol 897 ◽  
pp. 137-142
Author(s):  
Luiza Silva ◽  
Elisabete Silva ◽  
Isabel Brás ◽  
Idalina Domingos ◽  
Dulcineia Wessel ◽  
...  

The Life Cycle Assessment (LCA) is one of the most important analytical tools available to provide the scientific basis of engineering solutions for sustainability. The focus of this study was a LCA (cradle to gate) of a product intended to be used in countertops. The functional unit chosen was 1 m2 of finished panel (countertop) and the boundary system involved the study of raw materials and product packaging and the panel’s production process. The chosen method for impact assessment was EPD (2018) available in SimaPro PhD software and Acidification, Eutrophication, Global Warming, Photochemical Oxidation, Abiotic Depletion (elements), Abiotic Depletion (fossil fuels), Water Scarcity and Ozone Layer Depletion were the impact categories considered. Results showed that the panel’s manufacturing is the process that presented the highest influence in all categories analyzed ranging from 88% on Abiotic Depletion to approximately 101% on Water Scarcity. Polyvinylchloride (PVC) is the greatest contributors to all impact categories except to Photochemical Oxidation that is the Polyester.


2019 ◽  
Vol 667 ◽  
pp. 780-791 ◽  
Author(s):  
Thibaut Maury ◽  
Philippe Loubet ◽  
Mirko Trisolini ◽  
Aurélie Gallice ◽  
Guido Sonnemann ◽  
...  

2021 ◽  
Vol 13 (12) ◽  
pp. 6657
Author(s):  
Brett Fulford ◽  
Karen Mezzi ◽  
Andy Whiting ◽  
Simon Aumônier

The Breezhaler® dry powder inhaler (DPI) has a low carbon footprint compared with other inhalation therapies, consistent with the literature on other DPIs. This life-cycle assessment was conducted in France, Germany, the UK, and Japan using a “cradle-to-grave” technique to evaluate six environmental impact categories (global warming potential; acidification; ozone depletion; use of resource, minerals, and metals; eco-toxicity; and freshwater use) associated with the use of the Breezhaler®. Three variants of the Breezhaler® (30-day packs with and without the digital companion and a 90-day pack without the digital companion) were evaluated to identify major hotspots in the device life-cycle and to provide realistic solutions to reduce the environmental impact. Although no single life-cycle stage dominated the climate change impact of the 30-day device with the digital companion, the inhaler’s raw materials and packaging contributed to 96% of the resource depletion impact for the 30-day device without the digital companion. For the 90-day device without the digital companion, packaging contributed 42–62% of the impact across all categories. Overall, the Breezhaler® inhaler with the 90-day pack had the lowest environmental impact. The environmental impact of the device did not vary significantly among the considered markets. Further studies are needed to assess the impact of active pharmaceutical ingredients and improvement in clinical outcomes on the environment.


Author(s):  
Afsaneh Eskandari Ashgofti ◽  
Maryam Morovati ◽  
Ebrahim Alaiee ◽  
Kamelia Alavi

Introduction: Due to population growth and subsequent limited water resources, the use of treatment plant effluents is of particular importance. Therefore, this study was conducted to identify the environmental effects of the treatment plant and also to identify critical points or weaknesses of the treatment plant system and provide corrective action to reduce the severity of the effects.  Methods: After visiting the research institute and collecting data (during the years 2017-2018), the energy, consuming materials and output of the system were calculated using the life cycle assessment method. Finally, information on the spread of pollution and consumption was included in the list of index effects. To analyze the obtained information, Simapro software (using ILCD 2011 Midpoint V1.03 method) version 8.5.0.0. was applied. Results: Based on the research findings, the software depicted the evaluation of the effects in 13 categories and all the information entered in the software according to the impact, has participated in each category of effects, the most effective factors related to chloride, energy consumption and oil. Conclusion: The results of this study show that the main critical point identified in the treatment plant is related to electricity and the sanitary effluent is in a worse condition than the industrial effluent. However, the environmental impact of industrial effluents should not be neglected. Due to the fact that the MBR method is considered as one of the best methods of wastewater treatment, it is not recommended to change the treatment method, but with continuous monitoring and management of the system, it is possible to reduce the consumption of raw materials.


2020 ◽  
Vol 31 (1) ◽  
pp. 49-54
Author(s):  
Cristina Ghinea ◽  
Ana Leahu

AbstractYogurt is a fermented milk product, resulted through milk acidification by lactic acid bacteria, highly appreciated worldwide. In this study, life cycle assessment (LCA) methodology was applied for modelling of environmental impacts associated with yogurt production. The system boundaries include the following activities: milk processing, transport, solid waste and wastewater treatments. Functional unit set for this study is 1 kg of produced yogurt. The input and output data were collected from various sources like reports, databases, legislation. All these data were used further in the impact assessment stage performed with GaBi software which includes LCA methods like CML2001 - Jan. 2016, ReCiPe 1.08, UBP 2013, EDIP 2003 and others. Results showed that the global warming potential (GWP) determined for yogurt was 2.92 kg CO2 eq. per kg of yogurt, while acidification potential (AP) was approximately 0.014 kg SO2 eq. per kg of yogurt. It was observed that the main contributor to all impact categories is consumption of electricity during the yogurt production, mainly in the pasteurization, evaporation and cooling stages. 61.4% of the emissions resulted from transportation of raw materials contributes to GWP, while 38.3% to photochemical ozone creation potential (POCP). Emissions from wastewater treatment are contributing especially to the eutrophication potential (EP), while emission from solid waste landfilling are contributing mainly to POCP.


2019 ◽  
Vol 11 (8) ◽  
pp. 2258 ◽  
Author(s):  
Franz Segovia ◽  
Pierre Blanchet ◽  
Ben Amor ◽  
Costel Barbuta ◽  
Robert Beauregard

The benefits of aluminum lamination in improving the physical and mechanical properties of wood-based composites is now well documented. This paper shows the contribution of life cycle assessment (LCA) as a tool to assess and compare the environmental footprint in the development of laminated panels. SimaPro 9.0 software, using Ecoinvent database was used to analyze the environmental impacts associated with the manufacturing of wood aluminum-laminated (WAL) panels and aluminum honeycomb panel (AHP). The impact 2002+ method was used to estimate environmental impacts. The LCA results show that the WAL panels manufacturing had a lower environmental impact than AHP manufacturing. In term of product, wood-based composites were the best choice as a core in laminated panel manufacturing. Wood-based composite manufacturing showed environmental advantages in all damage categories except in ecosystem quality. Aluminum alloy sheets manufacturing played an important role in the generation of environmental impacts for laminated panel development.


Sign in / Sign up

Export Citation Format

Share Document