scholarly journals Life cycle assessment of fermented milk: yogurt production

2020 ◽  
Vol 31 (1) ◽  
pp. 49-54
Author(s):  
Cristina Ghinea ◽  
Ana Leahu

AbstractYogurt is a fermented milk product, resulted through milk acidification by lactic acid bacteria, highly appreciated worldwide. In this study, life cycle assessment (LCA) methodology was applied for modelling of environmental impacts associated with yogurt production. The system boundaries include the following activities: milk processing, transport, solid waste and wastewater treatments. Functional unit set for this study is 1 kg of produced yogurt. The input and output data were collected from various sources like reports, databases, legislation. All these data were used further in the impact assessment stage performed with GaBi software which includes LCA methods like CML2001 - Jan. 2016, ReCiPe 1.08, UBP 2013, EDIP 2003 and others. Results showed that the global warming potential (GWP) determined for yogurt was 2.92 kg CO2 eq. per kg of yogurt, while acidification potential (AP) was approximately 0.014 kg SO2 eq. per kg of yogurt. It was observed that the main contributor to all impact categories is consumption of electricity during the yogurt production, mainly in the pasteurization, evaporation and cooling stages. 61.4% of the emissions resulted from transportation of raw materials contributes to GWP, while 38.3% to photochemical ozone creation potential (POCP). Emissions from wastewater treatment are contributing especially to the eutrophication potential (EP), while emission from solid waste landfilling are contributing mainly to POCP.

Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 873
Author(s):  
Francisco Javier Flor-Montalvo ◽  
Agustín Sánchez-Toledo Ledesma ◽  
Eduardo Martínez Cámara ◽  
Emilio Jiménez-Macías ◽  
Jorge Luis García-Alcaraz ◽  
...  

Natural stoppers are a magnificent closure for the production of aging wines and unique wines, whose application is limited by the availability of raw materials and more specifically of cork sheets of different thickness and quality. The growing demand for quality wine bottle closures leads to the search for alternative stopper production. The two-piece stopper is an alternative since it uses non-usable plates in a conventional way for the production of quality caps. The present study has analyzed the impact of the manufacture of these two-piece stoppers using different methodologies and for different dimensions by developing an LCA (Life Cycle Assessment), concluding that the process phases of the plate, its boiling, and its stabilization, are the phases with the greatest impact. Likewise, it is detected that the impacts in all phases are relatively similar (for one kg of net cork produced), although the volumetric difference between these stoppers represents a significant difference in impacts for each unit produced.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1007
Author(s):  
Chun-Hung Moy ◽  
Lian-See Tan ◽  
Noor Fazliani Shoparwe ◽  
Azmi Mohd Shariff ◽  
Jully Tan

Plastics are used for various applications, including in the food and beverage industry, for the manufacturing of plastic utensils and straws. The higher utilization of plastic straws has indirectly resulted in the significant disposal of plastic waste, which has become a serious environmental issue. Alternatively, bio-plastic and paper straws have been introduced to reduce plastic waste. However, limited studies are available on the environmental assessment of drinking straws. Life cycle assessment (LCA) studies for bio-plastic and paper straws have not been comprehensively performed previously. Therefore, the impact of both bio-plastic and paper straws on the environment are quantified and compared in this study. Parameters, such as the global warming potential (GWP), acidification potential (AP) and eutrophication potential (EP), were evaluated. The input–output data of the bio-plastic and paper straws processes from a gate-to-grave analysis were obtained from the literature and generated using the SuperPro Designer V9 process simulator. The results show that bio-plastic straws, which are also known as polylactic acid (PLA) straws, had reduced environmental impacts compared to paper straws. The outcomes of this work provide an insight into the application of bio-plastic and paper straws in effectively reducing the impact on the environment and in promoting sustainability, especially from the perspective of Malaysia.


Author(s):  
Bayu Sukmana ◽  
Isti Surjandari ◽  
Muryanto . ◽  
Arief A. R. Setiawan ◽  
Edi Iswanto Wiloso

Firstly global warming issue caused by greenhouse gas emissions (CO2) which comes from human activities. Along with increasing of daily need, that humans of activities food produce is also increase, include of tofu. Tofu is a traditional Indonesian specialty made from soybeans and used as a side dish. The purpose of this study was to determine the impact of global warming from tofu products on Mampang Prapatan's Small Tofu and Medium Enterprises. The method used in this study is the Life Cycle Assessment (LCA) method with the help of Simapro 8.4 software with a 1 kg tofu functional unit. The data collected in this study is the average data of tofu production for 3 months, namely January - March 2018. The LCA data in this study include the process of soybean cultivation, transportation processes for shipping soybeans, water, fuel wood, and electricity use. The limitations of this study are from cradle (soybean cultivation) to gate (tofu products).The results showed that UKM Mampang Prapatan has the potential impact of global warming with a value of 3.84 kg CO2-eq, while the value of global warming in the production process knows the scenario of wastewater treatment and the use of Liquefied Petroleum Gas (LPG) as fuel for boiling pulp 4.49 kg CO2-eq soybeans. Based on the results of this study, greenhouse gas (CO2) emissions are issued; the intervention that can be done is to optimize the use of raw materials for production to reduce the impact of CO2-eq kg global warming.


2016 ◽  
Vol 35 (1) ◽  
pp. 79-91 ◽  
Author(s):  
Bhupendra K Sharma ◽  
Munish K Chandel

Dumping of municipal solid waste into uncontrolled dumpsites is the most common method of waste disposal in most cities of India. These dumpsites are posing a serious challenge to environmental quality and sustainable development. Mumbai, which generates over 9000 t of municipal solid waste daily, also disposes of most of its waste in open dumps. It is important to analyse the impact of municipal solid waste disposal today and what would be the impact under integrated waste management schemes. In this study, life cycle assessment methodology was used to determine the impact of municipal solid waste management under different scenarios. Six different scenarios were developed as alternatives to the current practice of open dumping and partially bioreactor landfilling. The scenarios include landfill with biogas collection, incineration and different combinations of recycling, landfill, composting, anaerobic digestion and incineration. Global warming, acidification, eutrophication and human toxicity were assessed as environmental impact categories. The sensitivity analysis shows that if the recycling rate is increased from 10% to 90%, the environmental impacts as compared with present scenario would reduce from 998.43 kg CO2 eq t−1 of municipal solid waste, 0.124 kg SO2 eq t−1, 0.46 kg PO4−3 eq t−1, 0.44 kg 1,4-DB eq t−1 to 892.34 kg CO2 eq t−1, 0.121 kg SO2 eq t−1, 0.36 kg PO4−3 eq t−1, 0.40 kg 1,4-DB eq t−1, respectively. An integrated municipal solid waste management approach with a mix of recycling, composting, anaerobic digestion and landfill had the lowest overall environmental impact. The technologies, such as incineration, would reduce the global warming emission because of the highest avoided emissions, however, human toxicity would increase.


2020 ◽  
Vol 161 ◽  
pp. 01086
Author(s):  
Alena Rozhkova ◽  
Julia Olentsova

Milk and dairy products occupy an important place in the human food. The development of a popular fermented milk product - yogurt of combined composition - is a prospective direction and has practical significance for the dairy industry. The developed yogurt expands the range of the dairy industry based on dairy and plant-based raw materials. with the increasing demand for fermented milk products, it became necessary to transit from private to industrial production of these products. To produce this product, raw cow’s milk, skimmed milk powder and a plant-based additive are used. As a plant-based additive, the leaves of mint were used.


2019 ◽  
Vol 11 (20) ◽  
pp. 5628 ◽  
Author(s):  
Jan Lindner ◽  
Horst Fehrenbach ◽  
Lisa Winter ◽  
Judith Bloemer ◽  
Eva Knuepffer

In this article, the authors propose an impact assessment method for life cycle assessment (LCA) that adheres to established LCA principles for land use-related impact assessment, bridges current research gaps and addresses the requirements of different stakeholders for a methodological framework. The conservation of biodiversity is a priority for humanity, as expressed in the framework of the Sustainable Development Goals (SDGs). Addressing biodiversity across value chains is a key challenge for enabling sustainable production pathways. Life cycle assessment is a standardised approach to assess and compare environmental impacts of products along their value chains. The impact assessment method presented in this article allows the quantification of the impact of land-using production processes on biodiversity for several broad land use classes. It provides a calculation framework with degrees of customisation (e.g., to take into account regional conservation priorities), but also offers a default valuation of biodiversity based on naturalness. The applicability of the method is demonstrated through an example of a consumer product. The main strength of the approach is that it yields highly aggregated information on the biodiversity impacts of products, enabling biodiversity-conscious decisions about raw materials, production routes and end user products.


2021 ◽  
Vol 897 ◽  
pp. 137-142
Author(s):  
Luiza Silva ◽  
Elisabete Silva ◽  
Isabel Brás ◽  
Idalina Domingos ◽  
Dulcineia Wessel ◽  
...  

The Life Cycle Assessment (LCA) is one of the most important analytical tools available to provide the scientific basis of engineering solutions for sustainability. The focus of this study was a LCA (cradle to gate) of a product intended to be used in countertops. The functional unit chosen was 1 m2 of finished panel (countertop) and the boundary system involved the study of raw materials and product packaging and the panel’s production process. The chosen method for impact assessment was EPD (2018) available in SimaPro PhD software and Acidification, Eutrophication, Global Warming, Photochemical Oxidation, Abiotic Depletion (elements), Abiotic Depletion (fossil fuels), Water Scarcity and Ozone Layer Depletion were the impact categories considered. Results showed that the panel’s manufacturing is the process that presented the highest influence in all categories analyzed ranging from 88% on Abiotic Depletion to approximately 101% on Water Scarcity. Polyvinylchloride (PVC) is the greatest contributors to all impact categories except to Photochemical Oxidation that is the Polyester.


2020 ◽  
Vol 8 (2) ◽  
pp. 192 ◽  
Author(s):  
Fatemeh Nejati ◽  
Stefan Junne ◽  
Peter Neubauer

Milk kefir is a traditional fermented milk product whose consumption is becoming increasingly popular. The natural starter for kefir production is kefir grain, which consists of various bacterial and yeast species. At the industrial scale, however, kefir grains are rarely used due to their slow growth, complex application, bad reproducibility and high costs. Instead, mixtures of defined lactic acid bacteria and sometimes yeasts are applied, which alter sensory and functional properties compared to natural grain-based milk kefir. In order to be able to mimic natural starter cultures for authentic kefir production, it is a prerequisite to gain deep knowledge about the nature of kefir grains, its microbial composition, morphologic structure, composition of strains on grains and the impact of environmental parameters on kefir grain characteristics. In addition, it is very important to deeply investigate the numerous multi-dimensional interactions among different species, which play important roles on the formation and the functionality of grains.


2011 ◽  
Vol 471-472 ◽  
pp. 999-1004 ◽  
Author(s):  
Mariam Al-Ma'adeed ◽  
Gozde Ozerkan ◽  
Ramazan Kahraman ◽  
Saravanan Rajendran ◽  
Alma Hodzic

Although recycled polymers and reinforced polymer composites have been in use for many years there is little information available on their environmental impacts. The goal of the present study is to analyze the environmental impact of new composite materials obtained from the combination of recycled thermoplastics (polypropylene [PP] and polyethylene [PE]) with mineral fillers like talc and with glass fiber. The environmental impact of these composite materials is compared to the impact of virgin PP and PE. The recycled and virgin materials were compared using life cycle assessment method according to their environmental effects. Within the scope of the study, GaBi software was used for Life Cycle Assessment (LCA) analysis. From cradle-to-grave life cycle inventory studies were performed for 1 kg of each of the thermoplastics. Landfilling was considered as reference scenario and compared with filled recycled plastics. A quantitative impact assessment was performed for four environmental impact categories, global warming (GWP) over a hundred years, human toxicity (HTP), abiotic depletion (ADP) and acidification potential (AP) were taken into consideration during LCA. In the comparison of recycled and virgin polymers, it was seen that recycling has lower environmental effect for different impact assessment methods like acidification potential, abiotic depletion, human toxicity and global warming.


Author(s):  
Marcos Esterman ◽  
Maria E. Fumagalli ◽  
Brian Thorn ◽  
Callie Babbitt

With the increased concern over the impact that product and processes have on the environment several tools for environmental impact assessment have been developed. Life Cycle Assessment (LCA) is perhaps the most broadly known and used. The use of LCA is common in industry and there is a growing interest to improve the approach since several unresolved problems have been identified with its use. One important issue to resolve is the proper definition of the functional unit. The stated primary goal of the functional unit in LCA is to ensure comparability of LCA results; however, when reviewing the literature, LCA practitioners remark that comparing LCA studies is a very difficult task. The attributed reasons for this problem are the lack of standardized assumptions and practices, including the definition of the functional unit. Even though several unresolved problems present in LCA have had solutions proposed, a clear and actionable solution to the specific problem of functional unit definition is still not available. This paper will introduce system engineering and functional analysis concepts to the goal and scope definition phase of LCA in order to provide a framework for system definition, system boundary definition, and reference flows identification. System engineering principles and functional analysis have been extensively used to aid the design process, yet these approaches have not been effectively applied to the LCA domain. The benefits associated with the proposed framework include improved comparability of LCAs, dynamic updating of LCAs, and the integration of LCA into early stage product development.


Sign in / Sign up

Export Citation Format

Share Document