scholarly journals Energy Optimization of the Pumping Station

2021 ◽  
Vol 9 (1) ◽  
pp. 37
Author(s):  
Martyna Świętochowska ◽  
Izabela Bartkowska ◽  
Joanna Gwoździej-Mazur

The main challenge in the field of water distribution systems (WDS) is (re)designing the network in order to achieve savings. In many water systems, there are pumping stations designed for much larger flows than what would be observed under normal operating conditions. On the other hand, reducing the diameter of the water pipes has become the main saving method. Designers very often forget to design the network so that it can be used for fire protection purposes. The computer modelling of water networks supports the decision-making process by identifying the optimal compromise between cost and performance (e.g., flow, velocity, pressure). Computer models help in the selection of optimal values of hydraulic pumps, preparation of the pump control method and selection of energy-optimized pumping systems, ensuring the efficiency and pressure of the WDS during normal operation and in fire conditions. The article presents the results of optimization of the pump station in terms of efficiency and pressure in the system, and optimization of pump energy consumption. Computer simulations of the water supply system, measurements of pressure and flow, hydrant flow tests, and model calibration were used in the research.

2021 ◽  
Vol 13 (14) ◽  
pp. 7998
Author(s):  
Maxime Binama ◽  
Kan Kan ◽  
Hui-Xiang Chen ◽  
Yuan Zheng ◽  
Daqing Zhou ◽  
...  

The utilization of pump as turbines (PATs) within water distribution systems for energy regulation and hydroelectricity generation purposes has increasingly attracted the energy field players’ attention. However, its power production efficiency still faces difficulties due to PAT’s lack of flow control ability in such dynamic systems. This has eventually led to the introduction of the so-called “variable operating strategy” or VOS, where the impeller rotational speed may be controlled to satisfy the system-required flow conditions. Taking from these grounds, this study numerically investigates PAT eventual flow structures formation mechanism, especially when subjected to varying impeller rotational speed. CFD-backed numerical simulations were conducted on PAT flow under four operating conditions (1.00 QBEP, 0.82 QBEP, 0.74 QBEP, and 0.55 QBEP), considering five impeller rotational speeds (110 rpm, 130 rpm, 150 rpm, 170 rpm, and 190 rpm). Study results have shown that both PAT’s flow and pressure fields deteriorate with the machine influx decrease, where the impeller rotational speed increase is found to alleviate PAT pressure pulsation levels under high-flow operating conditions, while it worsens them under part-load conditions. This study’s results add value to a thorough understanding of PAT flow dynamics, which, in a long run, contributes to the solution of the so-far existent technical issues.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 463
Author(s):  
Gopinathan R. Abhijith ◽  
Leonid Kadinski ◽  
Avi Ostfeld

The formation of bacterial regrowth and disinfection by-products is ubiquitous in chlorinated water distribution systems (WDSs) operated with organic loads. A generic, easy-to-use mechanistic model describing the fundamental processes governing the interrelationship between chlorine, total organic carbon (TOC), and bacteria to analyze the spatiotemporal water quality variations in WDSs was developed using EPANET-MSX. The representation of multispecies reactions was simplified to minimize the interdependent model parameters. The physicochemical/biological processes that cannot be experimentally determined were neglected. The effects of source water characteristics and water residence time on controlling bacterial regrowth and Trihalomethane (THM) formation in two well-tested systems under chlorinated and non-chlorinated conditions were analyzed by applying the model. The results established that a 100% increase in the free chlorine concentration and a 50% reduction in the TOC at the source effectuated a 5.87 log scale decrement in the bacteriological activity at the expense of a 60% increase in THM formation. The sensitivity study showed the impact of the operating conditions and the network characteristics in determining parameter sensitivities to model outputs. The maximum specific growth rate constant for bulk phase bacteria was found to be the most sensitive parameter to the predicted bacterial regrowth.


2020 ◽  
Author(s):  
Inês B. Gomes ◽  
Lúcia Simões ◽  
Manuel Simões

<p>The selection of materials for plumbing application has potential implications on the chemical and microbiological quality of the delivered water. This work aims to evaluate the action of materials with different copper content (0, 57, 96 and 100%) on biofilm formation and control by chlorination and mechanical stress. A strain of <em>Stenotrophomonas maltophilia</em> isolated from drinking water was used as model microorganism and biofilms were developed in a rotating cylinder reactor (RCR) using realism-based shear stress conditions. Biofilms were characterized phenotypically and exposed to three control strategies: 10 mg/l of free chlorine for 10 min; an increased shear stress (equivalent to 1.5 m/s of fluid velocity); and the combination of both treatments. Biofilms formed on the copper materials had lower wet mass and produced significantly lower amounts of extracellular proteins than those formed on stainless steel (0% of copper content). Although, the effects of copper materials on biofilm cell density was not significant, these materials had important impact on the efficacy of chemical and/or mechanical treatments. Biofilms formed on 96 or 100% copper materials had lower content of culturable bacteria than that observed on stainless steel after exposure to chlorine or shear stress. The mechanical treatment used had no relevant effects in biofilm control. The combination of chemical and mechanical treatments only caused higher culturability reduction than chlorine in biofilms formed on 57% copper alloy. The number of viable cells present in bulk water after biofilm treatment with chlorine was lower when biofilms were formed on any of the copper surface. The overall results are of potential importance on the selection of materials for drinking water distribution systems, particularly for house and hospital plumbing systems to overcome the effects from chlorine decay. Copper alloys may have a positive public health impact by reducing the number of viable cells in the delivered water after chlorine exposure and improving the disinfection of DW systems. Moreover, the results demonstrate that residual chlorine and mechanical stress, two strategies conventionally used for disinfection of drinking water distribution systems, failed in <em>S. maltophilia</em> biofilm control.</p> <p><strong>Acknowledgements:</strong></p> <p>This work was the result of the projects: UIDB/00511/2020 of the Laboratory for Process Engineering, Environment, Biotechnology and Energy – LEPABE - funded by national funds through the FCT/MCTES (PIDDAC); PTDC/BII-BTI/30219/2017 - POCI-01-0145-FEDER-030219; POCI-01-0145-FEDER-006939, funded by FEDER funds through COMPETE2020 – Programa Operacional Competitividade e Internacionalização (POCI) and by national funds (PIDDAC) through FCT/MCTES; NORTE-01-0145-FEDER-000005 – LEPABE-2-ECO-INNOVATION, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF).</p>


2008 ◽  
Vol 39 (1) ◽  
pp. 43-52 ◽  
Author(s):  
Inmaculada Pulido-Calvo ◽  
Juan Carlos Gutiérrez-Estrada ◽  
José María Corbacho

Resources ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 43 ◽  
Author(s):  
Nena Apostolidou ◽  
Nick Papanikolaou

In this work, the electromechanical system of the 8000-series of Athens trolleybuses, based on data provided by OSY S.A., is analyzed. Those data were used to develop a valid model in order to estimate the total energy consumption of the vehicle under any possible operating conditions. In addition, an effort is made to estimate the energy saving potential if the wasted energy—in the form of heat—during braking or downhill courses is recovered (regenerative braking) and retrofitted during normal operation. This process requires the installation of appropriate electrical apparatus to recover and temporarily store this energy amount. Moreover, due to the fact that the main engine of the system is an asynchronous electric machine, its driving scheme is also of interest. This study assumes the current driving scheme, that is the direct vector control (DVC), and proposes an alternative control method, the direct torque control (DTC). Energy consumption/saving calculations highlight the effectiveness of incorporating regenerative braking infrastructure in trolleybuses transportation systems. Finally, a sustainable hybrid energy storage unit that supports regenerative braking is proposed.


2003 ◽  
Vol 3 (1-2) ◽  
pp. 255-261 ◽  
Author(s):  
T. Tanyimboh ◽  
B. Tahar ◽  
A. Templeman

This paper presents a novel method to model water distribution systems (WDS) with insufficient pressure. Methods for the prediction of the performance of a WDS with pressure deficiencies are reviewed. The influence of imposed relationships between nodal heads and outflows is assessed and numerical results are given. A Newton-Raphson technique plus line search is employed for solving the governing equations. It is demonstrated that the approach offers superior results for the hydraulic performance of networks under abnormal operating conditions compared to demand-driven analysis-based models.


Author(s):  
Dhafar Al-Ani ◽  
Saeid Habibi

As time goes on, more and more operating-modes based on changing demand profiles will be compiled to enrich the range of feasible solutions for a water distribution system. This implies the conservation of energy consumed by a water pumping station and improves the ability for energy optimization. Another important goal was improving safety, reliability, and maintenance cost. In this paper, three important goals were addressed: cost-effectives, safety, and self-sustainability operations of water distribution systems. In this work, the objective functions to optimize were total electrical energy cost, maintenance costs, and reservoir water level variation while preserving the service provided to water clients. To accomplish these goals, an effective Energy Optimization Strategy (EOS) that manages trade-off among operational cost, system safety, and reliability was proposed. Moreover, the EOS aims at improving the operating conditions (i.e., pumping schedule) of an existing network system (i.e., with given capacities of tanks) and without physical changes in the infrastructure of the distribution systems. The new strategy consisted of a new Parallel Multi-objective Particle Swarm optimization with Adaptive Search-space Boundaries (P-MOPSO-ASB) and a modified EPANET. This has several advantages: obtaining a Pareto-front with solutions that are quantitatively equally good and providing the decision maker with the opportunity to qualitatively compare the solutions before their implementation into practice. The multi-objective optimization approach developed in this paper follows modern applications that combine an optimization algorithm with a network simulation model by using full hydraulic simulations and distributed demand models. The proposed EOS was successfully applied to a rural water distribution system, namely Saskatoon West. The results showed that a potential for considerable cost reductions in total energy cost was achieved (approximately % 7.5). Furthermore, the safety and the reliability of the system are preserved by using the new optimal pump schedules.


Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2574
Author(s):  
Laura Monteiro ◽  
Ricardo Algarvio ◽  
Dídia Covas

Water age is frequently used as a surrogate for water quality in distribution networks and is often included in modelling and optimisation studies, though there are no reference values or standard performance functions for assessing the network behaviour regarding water age. This paper presents a novel methodology for obtaining enhanced system-specific water age performance assessment functions, tailored for each distribution network. The methodology is based on the establishment of relationships between the chlorine concentration at the sampling nodes and simulated water age. The proposed methodology is demonstrated through application to two water distribution systems in winter and summer seasons. Obtained results show a major improvement in comparison with those obtained by published performance functions, since the water age limits of the performance functions used herein are tailored to the analysed networks. This demonstrates that the development of network-specific water age performance functions is a powerful tool for more robustly and reliably defining water age goals and evaluating the system behaviour under different operating conditions.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3098
Author(s):  
Jimmy H. Gutiérrez-Bahamondes ◽  
Daniel Mora-Meliá ◽  
Pedro L. Iglesias-Rey ◽  
F. Javier Martínez-Solano ◽  
Yamisleydi Salgueiro

The investment and operating costs of pumping stations in drinking water distribution networks are some of the highest public costs in urban sectors. Generally, these systems are designed based on extreme scenarios. However, in periods of normal operation, extra energy is produced, thereby generating excess costs. To avoid this problem, this work presents a new methodology for the design of pumping stations. The proposed technique is based on the use of a setpoint curve to optimize the operating and investment costs of a station simultaneously. According to this purpose, a novel mathematical optimization model is developed. The solution output by the model includes the selection of the pumps, the dimensions of pipelines, and the optimal flow distribution among all water sources for a given network. To demonstrate the advantages of using this technique, a case study network is presented. A pseudo-genetic algorithm (PGA) is implemented to resolve the optimization model. Finally, the obtained results show that it is possible to determine the full design and operating conditions required to achieve the lowest cost in a multiple pump station network.


Smart Cities ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 1293-1315
Author(s):  
Neda Mashhadi ◽  
Isam Shahrour ◽  
Nivine Attoue ◽  
Jamal El Khattabi ◽  
Ammar Aljer

This paper presents an investigation of the capacity of machine learning methods (ML) to localize leakage in water distribution systems (WDS). This issue is critical because water leakage causes economic losses, damages to the surrounding infrastructures, and soil contamination. Progress in real-time monitoring of WDS and ML has created new opportunities to develop data-based methods for water leak localization. However, the managers of WDS need recommendations for the selection of the appropriate ML methods as well their practical use for leakage localization. This paper contributes to this issue through an investigation of the capacity of ML methods to localize leakage in WDS. The campus of Lille University was used as support for this research. The paper is presented as follows: First, flow and pressure data were determined using EPANET software; then, the generated data were used to investigate the capacity of six ML methods to localize water leakage. Finally, the results of the investigations were used for leakage localization from offline water flow data. The results showed excellent performance for leakage localization by the artificial neural network, logistic regression, and random forest, but there were low performances for the unsupervised methods because of overlapping clusters.


Sign in / Sign up

Export Citation Format

Share Document